Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282050226> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4282050226 endingPage "9" @default.
- W4282050226 startingPage "1" @default.
- W4282050226 abstract "Hyperspectral microscopy in biology and minerals, unsupervised deep learning neural network denoising SRS photos: hyperspectral resolution enhancement and denoising one hyperspectral picture is enough to teach unsupervised method. An intuitive chemical species map for a lithium ore sample is produced using <math xmlns=http://www.w3.org/1998/Math/MathML id=M1> <mi>k</mi> </math> -means clustering. Many researchers are now interested in biosignals. Uncertainty limits the algorithms’ capacity to evaluate these signals for further information. Even while AI systems can answer puzzles, they remain limited. Deep learning is used when machine learning is inefficient. Supervised learning needs a lot of data. Deep learning is vital in modern AI. Supervised learning requires a large labeled dataset. The selection of parameters prevents over- or underfitting. Unsupervised learning is used to overcome the challenges outlined above (performed by the clustering algorithm). To accomplish this, two processing processes were used: (1) utilizing nonlinear deep learning networks to turn data into a latent feature space ( <math xmlns=http://www.w3.org/1998/Math/MathML id=M2> <mi>Z</mi> </math> ). The Kullback–Leibler divergence is used to test the objective function convergence. This article explores a novel research on hyperspectral microscopic picture using deep learning and effective unsupervised learning." @default.
- W4282050226 created "2022-06-13" @default.
- W4282050226 creator A5002449148 @default.
- W4282050226 creator A5048626615 @default.
- W4282050226 creator A5049534923 @default.
- W4282050226 creator A5071736410 @default.
- W4282050226 creator A5090900719 @default.
- W4282050226 date "2022-06-06" @default.
- W4282050226 modified "2023-09-30" @default.
- W4282050226 title "Unsupervised Hyperspectral Microscopic Image Segmentation Using Deep Embedded Clustering Algorithm" @default.
- W4282050226 cites W2005798029 @default.
- W4282050226 cites W2011067205 @default.
- W4282050226 cites W2038518913 @default.
- W4282050226 cites W2041218572 @default.
- W4282050226 cites W2076778321 @default.
- W4282050226 cites W2102535885 @default.
- W4282050226 cites W2567699853 @default.
- W4282050226 cites W2757928176 @default.
- W4282050226 cites W2768673271 @default.
- W4282050226 cites W2794052835 @default.
- W4282050226 cites W2805655379 @default.
- W4282050226 cites W2819713423 @default.
- W4282050226 cites W2897197428 @default.
- W4282050226 cites W2919284498 @default.
- W4282050226 cites W2971686199 @default.
- W4282050226 cites W2992361169 @default.
- W4282050226 cites W3028573817 @default.
- W4282050226 cites W3034457289 @default.
- W4282050226 cites W3085410595 @default.
- W4282050226 cites W3127425306 @default.
- W4282050226 cites W3193282705 @default.
- W4282050226 cites W3212483737 @default.
- W4282050226 cites W4214753366 @default.
- W4282050226 cites W4224315326 @default.
- W4282050226 doi "https://doi.org/10.1155/2022/1200860" @default.
- W4282050226 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35800209" @default.
- W4282050226 hasPublicationYear "2022" @default.
- W4282050226 type Work @default.
- W4282050226 citedByCount "119" @default.
- W4282050226 countsByYear W42820502262022 @default.
- W4282050226 countsByYear W42820502262023 @default.
- W4282050226 crossrefType "journal-article" @default.
- W4282050226 hasAuthorship W4282050226A5002449148 @default.
- W4282050226 hasAuthorship W4282050226A5048626615 @default.
- W4282050226 hasAuthorship W4282050226A5049534923 @default.
- W4282050226 hasAuthorship W4282050226A5071736410 @default.
- W4282050226 hasAuthorship W4282050226A5090900719 @default.
- W4282050226 hasBestOaLocation W42820502261 @default.
- W4282050226 hasConcept C108583219 @default.
- W4282050226 hasConcept C11413529 @default.
- W4282050226 hasConcept C119857082 @default.
- W4282050226 hasConcept C153180895 @default.
- W4282050226 hasConcept C154945302 @default.
- W4282050226 hasConcept C159078339 @default.
- W4282050226 hasConcept C41008148 @default.
- W4282050226 hasConcept C73555534 @default.
- W4282050226 hasConcept C8038995 @default.
- W4282050226 hasConceptScore W4282050226C108583219 @default.
- W4282050226 hasConceptScore W4282050226C11413529 @default.
- W4282050226 hasConceptScore W4282050226C119857082 @default.
- W4282050226 hasConceptScore W4282050226C153180895 @default.
- W4282050226 hasConceptScore W4282050226C154945302 @default.
- W4282050226 hasConceptScore W4282050226C159078339 @default.
- W4282050226 hasConceptScore W4282050226C41008148 @default.
- W4282050226 hasConceptScore W4282050226C73555534 @default.
- W4282050226 hasConceptScore W4282050226C8038995 @default.
- W4282050226 hasLocation W42820502261 @default.
- W4282050226 hasLocation W42820502262 @default.
- W4282050226 hasLocation W42820502263 @default.
- W4282050226 hasOpenAccess W4282050226 @default.
- W4282050226 hasPrimaryLocation W42820502261 @default.
- W4282050226 hasRelatedWork W2597787948 @default.
- W4282050226 hasRelatedWork W3123344745 @default.
- W4282050226 hasRelatedWork W3192794374 @default.
- W4282050226 hasRelatedWork W3208584567 @default.
- W4282050226 hasRelatedWork W4221031031 @default.
- W4282050226 hasRelatedWork W4223943233 @default.
- W4282050226 hasRelatedWork W4246751904 @default.
- W4282050226 hasRelatedWork W4302303815 @default.
- W4282050226 hasRelatedWork W4319781722 @default.
- W4282050226 hasRelatedWork W4380075502 @default.
- W4282050226 hasVolume "2022" @default.
- W4282050226 isParatext "false" @default.
- W4282050226 isRetracted "false" @default.
- W4282050226 workType "article" @default.