Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282552232> ?p ?o ?g. }
- W4282552232 endingPage "3137" @default.
- W4282552232 startingPage "3129" @default.
- W4282552232 abstract "Predictive modeling using neuroimaging data has the potential to improve our understanding of the neurobiology underlying psychiatric disorders and putatively information interventions. Accordingly, there is a plethora of literature reviewing published studies, the mathematics underlying machine learning, and the best practices for using these approaches. As our knowledge of mental health and machine learning continue to evolve, we instead aim to look forward and predict topics that we believe will be important in current and future studies. Some of the most discussed topics in machine learning, such as bias and fairness, the handling of dirty data, and interpretable models, may be less familiar to the broader community using neuroimaging-based predictive modeling in psychiatry. In a similar vein, transdiagnostic research and targeting brain-based features for psychiatric intervention are modern topics in psychiatry that predictive models are well-suited to tackle. In this work, we target an audience who is a researcher familiar with the fundamental procedures of machine learning and who wishes to increase their knowledge of ongoing topics in the field. We aim to accelerate the utility and applications of neuroimaging-based predictive models for psychiatric research by highlighting and considering these topics. Furthermore, though not a focus, these ideas generalize to neuroimaging-based predictive modeling in other clinical neurosciences and predictive modeling with different data types (e.g., digital health data)." @default.
- W4282552232 created "2022-06-14" @default.
- W4282552232 creator A5014879789 @default.
- W4282552232 creator A5032271246 @default.
- W4282552232 creator A5038202347 @default.
- W4282552232 creator A5042339320 @default.
- W4282552232 creator A5044673394 @default.
- W4282552232 creator A5046091433 @default.
- W4282552232 creator A5050341590 @default.
- W4282552232 creator A5068584780 @default.
- W4282552232 creator A5069233580 @default.
- W4282552232 creator A5070668942 @default.
- W4282552232 creator A5086037619 @default.
- W4282552232 creator A5089381071 @default.
- W4282552232 creator A5089561890 @default.
- W4282552232 date "2022-06-13" @default.
- W4282552232 modified "2023-10-13" @default.
- W4282552232 title "Predicting the future of neuroimaging predictive models in mental health" @default.
- W4282552232 cites W1612155886 @default.
- W4282552232 cites W1901616594 @default.
- W4282552232 cites W1965445933 @default.
- W4282552232 cites W1979450493 @default.
- W4282552232 cites W2019652662 @default.
- W4282552232 cites W2049955503 @default.
- W4282552232 cites W2053465090 @default.
- W4282552232 cites W2061058954 @default.
- W4282552232 cites W2073045674 @default.
- W4282552232 cites W2107807525 @default.
- W4282552232 cites W2124757386 @default.
- W4282552232 cites W2135969150 @default.
- W4282552232 cites W2145949183 @default.
- W4282552232 cites W2158282570 @default.
- W4282552232 cites W2162994164 @default.
- W4282552232 cites W2189193594 @default.
- W4282552232 cites W2224504938 @default.
- W4282552232 cites W2275670668 @default.
- W4282552232 cites W2276762660 @default.
- W4282552232 cites W2284729062 @default.
- W4282552232 cites W2519704068 @default.
- W4282552232 cites W2537247270 @default.
- W4282552232 cites W2560565629 @default.
- W4282552232 cites W2563852449 @default.
- W4282552232 cites W2590328111 @default.
- W4282552232 cites W2606064325 @default.
- W4282552232 cites W2619936179 @default.
- W4282552232 cites W2738958980 @default.
- W4282552232 cites W2763386556 @default.
- W4282552232 cites W2775173797 @default.
- W4282552232 cites W2780364439 @default.
- W4282552232 cites W2780572856 @default.
- W4282552232 cites W2787427645 @default.
- W4282552232 cites W2789967495 @default.
- W4282552232 cites W2801765286 @default.
- W4282552232 cites W2889620547 @default.
- W4282552232 cites W2895486342 @default.
- W4282552232 cites W2895687530 @default.
- W4282552232 cites W2895703609 @default.
- W4282552232 cites W2909627766 @default.
- W4282552232 cites W2920509382 @default.
- W4282552232 cites W2920592168 @default.
- W4282552232 cites W2921949803 @default.
- W4282552232 cites W2932951493 @default.
- W4282552232 cites W2940179095 @default.
- W4282552232 cites W2950086191 @default.
- W4282552232 cites W2952161578 @default.
- W4282552232 cites W2955302788 @default.
- W4282552232 cites W2963095307 @default.
- W4282552232 cites W2963389298 @default.
- W4282552232 cites W2969754953 @default.
- W4282552232 cites W2973570606 @default.
- W4282552232 cites W2974327728 @default.
- W4282552232 cites W2984228197 @default.
- W4282552232 cites W2985923507 @default.
- W4282552232 cites W2987302793 @default.
- W4282552232 cites W2990091959 @default.
- W4282552232 cites W2990273940 @default.
- W4282552232 cites W2996500655 @default.
- W4282552232 cites W3004274611 @default.
- W4282552232 cites W3004386287 @default.
- W4282552232 cites W3007806780 @default.
- W4282552232 cites W3008720111 @default.
- W4282552232 cites W3008923041 @default.
- W4282552232 cites W3010317781 @default.
- W4282552232 cites W3010910782 @default.
- W4282552232 cites W3011443824 @default.
- W4282552232 cites W3012390183 @default.
- W4282552232 cites W3021647162 @default.
- W4282552232 cites W3031612870 @default.
- W4282552232 cites W3033021464 @default.
- W4282552232 cites W3034352949 @default.
- W4282552232 cites W3035624610 @default.
- W4282552232 cites W3048367007 @default.
- W4282552232 cites W3103396008 @default.
- W4282552232 cites W3111452660 @default.
- W4282552232 cites W3114072530 @default.
- W4282552232 cites W3122417751 @default.
- W4282552232 cites W3158490953 @default.
- W4282552232 cites W3164240626 @default.