Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282568310> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4282568310 abstract "Regular monitoring of blood pressure (BP) allows for early detection of hypertension and symptoms related to cardiovascular disease. Measuring BP with a cuff requires equipment that is not always readily available and it may be impractical for some patients. Smartphones are an integral part of the lives of most people; thus, detecting and monitoring hypertension with a smartphone is likely to increase the ability to monitor BP due to the convenience of use for many patients. Smartphones lend themselves to assessing cardiovascular health because their built-in sensors and cameras provide a means of detecting arterial pulsations. To this end, several image processing and machine learning (ML) techniques for predicting BP using a smartphone have been developed. Several ML models that utilize smartphones are discussed in this literature review. Of the 53 papers identified, seven publications were evaluated. The performance of the ML models was assessed based on their accuracy for classification, the mean error measure, and the standard deviation of error for regression. It was found that artificial neural networks and support vector machines were often used. Because a variety of influencing factors determines the performance of an ML model, no clear preference could be determined. The number of input features ranged from five to 233, with the most commonly used being demographic data and the features extracted from photoplethysmogram signals. Each study had a different number of participants, ranging from 17 to 5,992. Comparisons of the cuff-based measures were mostly used to validate the results. Some of these ML models are already used to detect hypertension and BP but, to satisfy possible regulatory demands, improved reliability is needed under a wider range of conditions, including controlled and uncontrolled environments. A discussion of the advantages of various ML techniques and the selected features is offered at the end of this systematic review." @default.
- W4282568310 created "2022-06-14" @default.
- W4282568310 creator A5021515928 @default.
- W4282568310 creator A5078961629 @default.
- W4282568310 creator A5080010648 @default.
- W4282568310 date "2022-06-13" @default.
- W4282568310 modified "2023-09-26" @default.
- W4282568310 title "Assessment of Blood Pressure Using Only a Smartphone and Machine Learning Techniques: A Systematic Review" @default.
- W4282568310 cites W1544435011 @default.
- W4282568310 cites W2083817839 @default.
- W4282568310 cites W2084285475 @default.
- W4282568310 cites W2538561053 @default.
- W4282568310 cites W2538703333 @default.
- W4282568310 cites W2790385199 @default.
- W4282568310 cites W2802068140 @default.
- W4282568310 cites W2899375141 @default.
- W4282568310 cites W2955961229 @default.
- W4282568310 cites W2965857341 @default.
- W4282568310 cites W2979164675 @default.
- W4282568310 cites W3009202705 @default.
- W4282568310 cites W3023529892 @default.
- W4282568310 cites W3047559810 @default.
- W4282568310 cites W3080403139 @default.
- W4282568310 cites W3090140479 @default.
- W4282568310 cites W3092659238 @default.
- W4282568310 cites W3118615836 @default.
- W4282568310 cites W3171925877 @default.
- W4282568310 cites W3211354811 @default.
- W4282568310 cites W3215086684 @default.
- W4282568310 cites W4281690837 @default.
- W4282568310 doi "https://doi.org/10.3389/fcvm.2022.894224" @default.
- W4282568310 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35770219" @default.
- W4282568310 hasPublicationYear "2022" @default.
- W4282568310 type Work @default.
- W4282568310 citedByCount "4" @default.
- W4282568310 countsByYear W42825683102022 @default.
- W4282568310 countsByYear W42825683102023 @default.
- W4282568310 crossrefType "journal-article" @default.
- W4282568310 hasAuthorship W4282568310A5021515928 @default.
- W4282568310 hasAuthorship W4282568310A5078961629 @default.
- W4282568310 hasAuthorship W4282568310A5080010648 @default.
- W4282568310 hasBestOaLocation W42825683101 @default.
- W4282568310 hasConcept C106131492 @default.
- W4282568310 hasConcept C116390426 @default.
- W4282568310 hasConcept C119857082 @default.
- W4282568310 hasConcept C12267149 @default.
- W4282568310 hasConcept C126322002 @default.
- W4282568310 hasConcept C154945302 @default.
- W4282568310 hasConcept C169258074 @default.
- W4282568310 hasConcept C31972630 @default.
- W4282568310 hasConcept C41008148 @default.
- W4282568310 hasConcept C50644808 @default.
- W4282568310 hasConcept C71924100 @default.
- W4282568310 hasConcept C84393581 @default.
- W4282568310 hasConceptScore W4282568310C106131492 @default.
- W4282568310 hasConceptScore W4282568310C116390426 @default.
- W4282568310 hasConceptScore W4282568310C119857082 @default.
- W4282568310 hasConceptScore W4282568310C12267149 @default.
- W4282568310 hasConceptScore W4282568310C126322002 @default.
- W4282568310 hasConceptScore W4282568310C154945302 @default.
- W4282568310 hasConceptScore W4282568310C169258074 @default.
- W4282568310 hasConceptScore W4282568310C31972630 @default.
- W4282568310 hasConceptScore W4282568310C41008148 @default.
- W4282568310 hasConceptScore W4282568310C50644808 @default.
- W4282568310 hasConceptScore W4282568310C71924100 @default.
- W4282568310 hasConceptScore W4282568310C84393581 @default.
- W4282568310 hasLocation W42825683101 @default.
- W4282568310 hasLocation W42825683102 @default.
- W4282568310 hasLocation W42825683103 @default.
- W4282568310 hasLocation W42825683104 @default.
- W4282568310 hasLocation W42825683105 @default.
- W4282568310 hasOpenAccess W4282568310 @default.
- W4282568310 hasPrimaryLocation W42825683101 @default.
- W4282568310 hasRelatedWork W1996541855 @default.
- W4282568310 hasRelatedWork W2786554164 @default.
- W4282568310 hasRelatedWork W2985924212 @default.
- W4282568310 hasRelatedWork W3195168932 @default.
- W4282568310 hasRelatedWork W3195610867 @default.
- W4282568310 hasRelatedWork W4308191010 @default.
- W4282568310 hasRelatedWork W4321636153 @default.
- W4282568310 hasRelatedWork W4327511089 @default.
- W4282568310 hasRelatedWork W4377964522 @default.
- W4282568310 hasRelatedWork W4381414210 @default.
- W4282568310 hasVolume "9" @default.
- W4282568310 isParatext "false" @default.
- W4282568310 isRetracted "false" @default.
- W4282568310 workType "article" @default.