Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282577092> ?p ?o ?g. }
- W4282577092 abstract "With the dynamic air traffic demand and the constrained capacity resources, accurately predicting airport throughput is essential to ensure the efficiency and resilience of air traffic operations. Many research efforts have been made to predict traffic throughputs or flight delays at an airport or over a network. However, it is still a challenging problem due to the complex spatiotemporal dynamics of the highly interacted air transportation systems. To address this challenge, we propose a novel deep learning model, graph attention neural network stacking with a Long short-term memory unit (GAT-LSTM), to predict the short-term airport throughput over a national air traffic network. LSTM layers are included to extract the temporal correlations in the data, while the graph attention mechanism is used to capture the spatial dependencies. For the graph attention mechanism, two graph modeling methods, airport-based graph and OD-pair graph are explored in this study. We tested the proposed model using real-world air traffic data involving 65 major airports in China over 3 months in 2017 and compared its performance with other state-of-the-art models. Results showed that the temporal pattern was the dominate factor, compared to the spatial pattern, in predicting airport throughputs over an air traffic network. Among the prediction models that we compared, both the proposed model and LSTM performed well on prediction accuracy over the entire network. Better performance of the proposed model was observed when focusing on airports with larger throughputs. We also conducted an analysis on model interpretability. We found that spatiotemporal correlations in the data were learned and shown via the model parameters, which helped us to gain insights into the topology and the dynamics of the air traffic network." @default.
- W4282577092 created "2022-06-14" @default.
- W4282577092 creator A5003293085 @default.
- W4282577092 creator A5058358022 @default.
- W4282577092 creator A5072153786 @default.
- W4282577092 creator A5073225009 @default.
- W4282577092 creator A5081921694 @default.
- W4282577092 creator A5086791845 @default.
- W4282577092 date "2022-06-13" @default.
- W4282577092 modified "2023-10-06" @default.
- W4282577092 title "Short-Term Nationwide Airport Throughput Prediction With Graph Attention Recurrent Neural Network" @default.
- W4282577092 cites W1875626450 @default.
- W4282577092 cites W1965549775 @default.
- W4282577092 cites W1982978808 @default.
- W4282577092 cites W1983615082 @default.
- W4282577092 cites W1992977321 @default.
- W4282577092 cites W1996820377 @default.
- W4282577092 cites W2009797633 @default.
- W4282577092 cites W2015444745 @default.
- W4282577092 cites W2021153764 @default.
- W4282577092 cites W2023841300 @default.
- W4282577092 cites W2024558842 @default.
- W4282577092 cites W2057583653 @default.
- W4282577092 cites W2064675550 @default.
- W4282577092 cites W2073640212 @default.
- W4282577092 cites W2089296357 @default.
- W4282577092 cites W2094350745 @default.
- W4282577092 cites W2106883422 @default.
- W4282577092 cites W2116341502 @default.
- W4282577092 cites W2125817951 @default.
- W4282577092 cites W2150010190 @default.
- W4282577092 cites W2160507653 @default.
- W4282577092 cites W2166731466 @default.
- W4282577092 cites W2166748245 @default.
- W4282577092 cites W2196496793 @default.
- W4282577092 cites W2331253784 @default.
- W4282577092 cites W2362302752 @default.
- W4282577092 cites W2566619632 @default.
- W4282577092 cites W2567648555 @default.
- W4282577092 cites W2573587735 @default.
- W4282577092 cites W2593182953 @default.
- W4282577092 cites W2767143769 @default.
- W4282577092 cites W2779684064 @default.
- W4282577092 cites W2807772079 @default.
- W4282577092 cites W2884738862 @default.
- W4282577092 cites W2903871660 @default.
- W4282577092 cites W2904213462 @default.
- W4282577092 cites W2916406395 @default.
- W4282577092 cites W2923625485 @default.
- W4282577092 cites W2983982218 @default.
- W4282577092 cites W2996451395 @default.
- W4282577092 cites W2998436408 @default.
- W4282577092 cites W2999301586 @default.
- W4282577092 cites W3036810500 @default.
- W4282577092 cites W3163347702 @default.
- W4282577092 cites W594114979 @default.
- W4282577092 doi "https://doi.org/10.3389/frai.2022.884485" @default.
- W4282577092 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35770143" @default.
- W4282577092 hasPublicationYear "2022" @default.
- W4282577092 type Work @default.
- W4282577092 citedByCount "3" @default.
- W4282577092 countsByYear W42825770922022 @default.
- W4282577092 countsByYear W42825770922023 @default.
- W4282577092 crossrefType "journal-article" @default.
- W4282577092 hasAuthorship W4282577092A5003293085 @default.
- W4282577092 hasAuthorship W4282577092A5058358022 @default.
- W4282577092 hasAuthorship W4282577092A5072153786 @default.
- W4282577092 hasAuthorship W4282577092A5073225009 @default.
- W4282577092 hasAuthorship W4282577092A5081921694 @default.
- W4282577092 hasAuthorship W4282577092A5086791845 @default.
- W4282577092 hasBestOaLocation W42825770921 @default.
- W4282577092 hasConcept C108583219 @default.
- W4282577092 hasConcept C119857082 @default.
- W4282577092 hasConcept C124101348 @default.
- W4282577092 hasConcept C127413603 @default.
- W4282577092 hasConcept C132525143 @default.
- W4282577092 hasConcept C146978453 @default.
- W4282577092 hasConcept C154945302 @default.
- W4282577092 hasConcept C157764524 @default.
- W4282577092 hasConcept C166961238 @default.
- W4282577092 hasConcept C2776777543 @default.
- W4282577092 hasConcept C2781067378 @default.
- W4282577092 hasConcept C2993807640 @default.
- W4282577092 hasConcept C41008148 @default.
- W4282577092 hasConcept C50644808 @default.
- W4282577092 hasConcept C555944384 @default.
- W4282577092 hasConcept C74448152 @default.
- W4282577092 hasConcept C76155785 @default.
- W4282577092 hasConcept C80444323 @default.
- W4282577092 hasConceptScore W4282577092C108583219 @default.
- W4282577092 hasConceptScore W4282577092C119857082 @default.
- W4282577092 hasConceptScore W4282577092C124101348 @default.
- W4282577092 hasConceptScore W4282577092C127413603 @default.
- W4282577092 hasConceptScore W4282577092C132525143 @default.
- W4282577092 hasConceptScore W4282577092C146978453 @default.
- W4282577092 hasConceptScore W4282577092C154945302 @default.
- W4282577092 hasConceptScore W4282577092C157764524 @default.
- W4282577092 hasConceptScore W4282577092C166961238 @default.
- W4282577092 hasConceptScore W4282577092C2776777543 @default.
- W4282577092 hasConceptScore W4282577092C2781067378 @default.