Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282581005> ?p ?o ?g. }
- W4282581005 endingPage "200" @default.
- W4282581005 startingPage "177" @default.
- W4282581005 abstract "Water pollution is a global problem. In developing countries like India, water pollution is growing exponentially due to faster unsustainable industrial developments and poor waste-water management. Hence, it is essential to predict the future levels of pollutants from the historical water quality data of the reservoir with the help of appropriate water quality modeling and forecasting. Subsequently, these forecasting results can be utilized to plan and execute the water quality management steps in advance. This chapter presents a comprehensive review of time series forecasting of the water quality parameters using classical statistical and artificial intelligence-based techniques. Here, important methods used to calculate the water quality index are discussed briefly. Further, a problem formulation for the modeling of water quality parameters, the performance metrics suitable for evaluating the time-series methods, comparative analysis, and important research challenges of the water quality time-series modeling and forecasting are presented." @default.
- W4282581005 created "2022-06-14" @default.
- W4282581005 creator A5000819769 @default.
- W4282581005 creator A5007470516 @default.
- W4282581005 creator A5009677290 @default.
- W4282581005 creator A5054380022 @default.
- W4282581005 date "2022-06-10" @default.
- W4282581005 modified "2023-10-16" @default.
- W4282581005 title "Water Quality Time-Series Modeling and Forecasting Techniques" @default.
- W4282581005 cites W1983683392 @default.
- W4282581005 cites W1992962552 @default.
- W4282581005 cites W1997754540 @default.
- W4282581005 cites W2040420128 @default.
- W4282581005 cites W2042190336 @default.
- W4282581005 cites W2070986256 @default.
- W4282581005 cites W2092643666 @default.
- W4282581005 cites W2105455980 @default.
- W4282581005 cites W2115648175 @default.
- W4282581005 cites W2139829411 @default.
- W4282581005 cites W2168138569 @default.
- W4282581005 cites W2217570575 @default.
- W4282581005 cites W2314698880 @default.
- W4282581005 cites W2493112503 @default.
- W4282581005 cites W2496120601 @default.
- W4282581005 cites W2734544976 @default.
- W4282581005 cites W2741815561 @default.
- W4282581005 cites W2744324527 @default.
- W4282581005 cites W2782982918 @default.
- W4282581005 cites W2785103246 @default.
- W4282581005 cites W2809133492 @default.
- W4282581005 cites W2811376496 @default.
- W4282581005 cites W2911419244 @default.
- W4282581005 cites W2915284144 @default.
- W4282581005 cites W2922995703 @default.
- W4282581005 cites W2926714578 @default.
- W4282581005 cites W2968755144 @default.
- W4282581005 cites W2970835038 @default.
- W4282581005 cites W2972928586 @default.
- W4282581005 cites W2978630513 @default.
- W4282581005 cites W2981586399 @default.
- W4282581005 cites W2981937877 @default.
- W4282581005 cites W2993021137 @default.
- W4282581005 cites W2997833886 @default.
- W4282581005 cites W3001629295 @default.
- W4282581005 cites W3009615209 @default.
- W4282581005 cites W3010338224 @default.
- W4282581005 cites W3013114926 @default.
- W4282581005 cites W3015307255 @default.
- W4282581005 cites W3033041468 @default.
- W4282581005 cites W3035758899 @default.
- W4282581005 cites W3080150692 @default.
- W4282581005 cites W3081535947 @default.
- W4282581005 cites W3087717661 @default.
- W4282581005 cites W3094586403 @default.
- W4282581005 cites W3095652165 @default.
- W4282581005 cites W3110420963 @default.
- W4282581005 cites W3113192514 @default.
- W4282581005 cites W3159114776 @default.
- W4282581005 cites W3162348573 @default.
- W4282581005 cites W3197801074 @default.
- W4282581005 cites W4206470718 @default.
- W4282581005 cites W4210663401 @default.
- W4282581005 cites W4238069701 @default.
- W4282581005 cites W4285659135 @default.
- W4282581005 cites W564272393 @default.
- W4282581005 cites W956812267 @default.
- W4282581005 cites W2535825127 @default.
- W4282581005 doi "https://doi.org/10.4018/978-1-6684-3981-4.ch012" @default.
- W4282581005 hasPublicationYear "2022" @default.
- W4282581005 type Work @default.
- W4282581005 citedByCount "2" @default.
- W4282581005 countsByYear W42825810052023 @default.
- W4282581005 crossrefType "book-chapter" @default.
- W4282581005 hasAuthorship W4282581005A5000819769 @default.
- W4282581005 hasAuthorship W4282581005A5007470516 @default.
- W4282581005 hasAuthorship W4282581005A5009677290 @default.
- W4282581005 hasAuthorship W4282581005A5054380022 @default.
- W4282581005 hasConcept C111472728 @default.
- W4282581005 hasConcept C119857082 @default.
- W4282581005 hasConcept C136764020 @default.
- W4282581005 hasConcept C138885662 @default.
- W4282581005 hasConcept C151406439 @default.
- W4282581005 hasConcept C153823671 @default.
- W4282581005 hasConcept C18903297 @default.
- W4282581005 hasConcept C2777382242 @default.
- W4282581005 hasConcept C2779530757 @default.
- W4282581005 hasConcept C2780797713 @default.
- W4282581005 hasConcept C39432304 @default.
- W4282581005 hasConcept C41008148 @default.
- W4282581005 hasConcept C521259446 @default.
- W4282581005 hasConcept C86803240 @default.
- W4282581005 hasConceptScore W4282581005C111472728 @default.
- W4282581005 hasConceptScore W4282581005C119857082 @default.
- W4282581005 hasConceptScore W4282581005C136764020 @default.
- W4282581005 hasConceptScore W4282581005C138885662 @default.
- W4282581005 hasConceptScore W4282581005C151406439 @default.
- W4282581005 hasConceptScore W4282581005C153823671 @default.
- W4282581005 hasConceptScore W4282581005C18903297 @default.