Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282583313> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4282583313 abstract "The improvement of deep learning facilitated the evolution of computer vision methods. Image dehazing is one of the challenging tasks in computer vision. Haze is a very common phenomenon arising due to bad weather, poor lighting, pollution, etc. Haze poses the problem of poor visibility in images under extreme circumstances. Several deep learning-based methods have been used to overcome haze-oriented problems. Generative networks (GANs) focus on the distribution of the normal images to remove the haze from a hazy image. The methods enhance the performance of computer vision under hazy conditions. This paper focuses on discussing a few important techniques, specially GANs, to solve the problem of dehazing. Various techniques have been qualitatively analyzed and the merits and demerits of the respective models have been discussed. Finally, some light is thrown upon the real-world applications and significance of dehazing." @default.
- W4282583313 created "2022-06-14" @default.
- W4282583313 creator A5010516970 @default.
- W4282583313 creator A5027197892 @default.
- W4282583313 creator A5073007837 @default.
- W4282583313 creator A5081001451 @default.
- W4282583313 date "2022-05-25" @default.
- W4282583313 modified "2023-10-18" @default.
- W4282583313 title "A Review on GAN based Image Dehazing" @default.
- W4282583313 cites W125693051 @default.
- W4282583313 cites W2028990532 @default.
- W4282583313 cites W2091079473 @default.
- W4282583313 cites W2110644821 @default.
- W4282583313 cites W2256362396 @default.
- W4282583313 cites W2519481857 @default.
- W4282583313 cites W2767248074 @default.
- W4282583313 cites W2798876216 @default.
- W4282583313 cites W2889008834 @default.
- W4282583313 cites W2892503698 @default.
- W4282583313 cites W2945160880 @default.
- W4282583313 cites W2945984868 @default.
- W4282583313 cites W2948606054 @default.
- W4282583313 cites W2963074253 @default.
- W4282583313 cites W2963928582 @default.
- W4282583313 cites W2964046397 @default.
- W4282583313 cites W2967809719 @default.
- W4282583313 cites W2997210448 @default.
- W4282583313 cites W3034331889 @default.
- W4282583313 cites W3042148526 @default.
- W4282583313 cites W3116350937 @default.
- W4282583313 cites W3159236515 @default.
- W4282583313 cites W3169962033 @default.
- W4282583313 cites W3171396792 @default.
- W4282583313 cites W3186292478 @default.
- W4282583313 cites W4210935918 @default.
- W4282583313 doi "https://doi.org/10.1109/iciccs53718.2022.9788377" @default.
- W4282583313 hasPublicationYear "2022" @default.
- W4282583313 type Work @default.
- W4282583313 citedByCount "1" @default.
- W4282583313 countsByYear W42825833132023 @default.
- W4282583313 crossrefType "proceedings-article" @default.
- W4282583313 hasAuthorship W4282583313A5010516970 @default.
- W4282583313 hasAuthorship W4282583313A5027197892 @default.
- W4282583313 hasAuthorship W4282583313A5073007837 @default.
- W4282583313 hasAuthorship W4282583313A5081001451 @default.
- W4282583313 hasConcept C108583219 @default.
- W4282583313 hasConcept C115961682 @default.
- W4282583313 hasConcept C120665830 @default.
- W4282583313 hasConcept C121332964 @default.
- W4282583313 hasConcept C123403432 @default.
- W4282583313 hasConcept C153294291 @default.
- W4282583313 hasConcept C154945302 @default.
- W4282583313 hasConcept C192209626 @default.
- W4282583313 hasConcept C31972630 @default.
- W4282583313 hasConcept C41008148 @default.
- W4282583313 hasConcept C79974267 @default.
- W4282583313 hasConceptScore W4282583313C108583219 @default.
- W4282583313 hasConceptScore W4282583313C115961682 @default.
- W4282583313 hasConceptScore W4282583313C120665830 @default.
- W4282583313 hasConceptScore W4282583313C121332964 @default.
- W4282583313 hasConceptScore W4282583313C123403432 @default.
- W4282583313 hasConceptScore W4282583313C153294291 @default.
- W4282583313 hasConceptScore W4282583313C154945302 @default.
- W4282583313 hasConceptScore W4282583313C192209626 @default.
- W4282583313 hasConceptScore W4282583313C31972630 @default.
- W4282583313 hasConceptScore W4282583313C41008148 @default.
- W4282583313 hasConceptScore W4282583313C79974267 @default.
- W4282583313 hasLocation W42825833131 @default.
- W4282583313 hasOpenAccess W4282583313 @default.
- W4282583313 hasPrimaryLocation W42825833131 @default.
- W4282583313 hasRelatedWork W1053659 @default.
- W4282583313 hasRelatedWork W10706815 @default.
- W4282583313 hasRelatedWork W12803709 @default.
- W4282583313 hasRelatedWork W4190492 @default.
- W4282583313 hasRelatedWork W461349 @default.
- W4282583313 hasRelatedWork W4827971 @default.
- W4282583313 hasRelatedWork W6129477 @default.
- W4282583313 hasRelatedWork W6468916 @default.
- W4282583313 hasRelatedWork W7139671 @default.
- W4282583313 hasRelatedWork W7650308 @default.
- W4282583313 isParatext "false" @default.
- W4282583313 isRetracted "false" @default.
- W4282583313 workType "article" @default.