Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282584776> ?p ?o ?g. }
- W4282584776 endingPage "100065" @default.
- W4282584776 startingPage "100065" @default.
- W4282584776 abstract "Clinical evidence suggests that some patients diagnosed with coronavirus disease 2019 (COVID-19) experience a variety of complications associated with significant morbidity, especially in severe cases during the initial spread of the pandemic. To support early interventions, we propose a machine learning system that predicts the risk of developing multiple complications. We processed data collected from 3,352 patient encounters admitted to 18 facilities between April 1 and April 30, 2020, in Abu Dhabi (AD), United Arab Emirates. Using data collected during the first 24 h of admission, we trained machine learning models to predict the risk of developing any of three complications after 24 h of admission. The complications include Secondary Bacterial Infection (SBI), Acute Kidney Injury (AKI), and Acute Respiratory Distress Syndrome (ARDS). The hospitals were grouped based on geographical proximity to assess the proposed system's learning generalizability, AD Middle region and AD Western & Eastern regions, A and B, respectively. The overall system includes a data filtering criterion, hyperparameter tuning, and model selection. In test set A, consisting of 587 patient encounters (mean age: 45.5), the system achieved a good area under the receiver operating curve (AUROC) for the prediction of SBI (0.902 AUROC), AKI (0.906 AUROC), and ARDS (0.854 AUROC). Similarly, in test set B, consisting of 225 patient encounters (mean age: 42.7), the system performed well for the prediction of SBI (0.859 AUROC), AKI (0.891 AUROC), and ARDS (0.827 AUROC). The performance results and feature importance analysis highlight the system's generalizability and interpretability. The findings illustrate how machine learning models can achieve a strong performance even when using a limited set of routine input variables. Since our proposed system is data-driven, we believe it can be easily repurposed for different outcomes considering the changes in COVID-19 variants over time." @default.
- W4282584776 created "2022-06-14" @default.
- W4282584776 creator A5008403370 @default.
- W4282584776 creator A5008680563 @default.
- W4282584776 creator A5010075041 @default.
- W4282584776 creator A5019582177 @default.
- W4282584776 creator A5022667961 @default.
- W4282584776 creator A5023660328 @default.
- W4282584776 creator A5035361546 @default.
- W4282584776 creator A5043305092 @default.
- W4282584776 creator A5061142822 @default.
- W4282584776 creator A5080693015 @default.
- W4282584776 creator A5084395884 @default.
- W4282584776 creator A5088654181 @default.
- W4282584776 creator A5089414632 @default.
- W4282584776 date "2022-01-01" @default.
- W4282584776 modified "2023-10-14" @default.
- W4282584776 title "Clinical prediction system of complications among patients with COVID-19: A development and validation retrospective multicentre study during first wave of the pandemic" @default.
- W4282584776 cites W1803784511 @default.
- W4282584776 cites W1966716734 @default.
- W4282584776 cites W2026274122 @default.
- W4282584776 cites W2065050289 @default.
- W4282584776 cites W2098026442 @default.
- W4282584776 cites W2098792130 @default.
- W4282584776 cites W2111547563 @default.
- W4282584776 cites W2154039449 @default.
- W4282584776 cites W2167744468 @default.
- W4282584776 cites W2225109326 @default.
- W4282584776 cites W2620241325 @default.
- W4282584776 cites W2751188726 @default.
- W4282584776 cites W2794885170 @default.
- W4282584776 cites W2905983446 @default.
- W4282584776 cites W2940553617 @default.
- W4282584776 cites W2999615587 @default.
- W4282584776 cites W3002568562 @default.
- W4282584776 cites W3008090866 @default.
- W4282584776 cites W3008443627 @default.
- W4282584776 cites W3009885589 @default.
- W4282584776 cites W3014289208 @default.
- W4282584776 cites W3014524604 @default.
- W4282584776 cites W3016785135 @default.
- W4282584776 cites W3019079576 @default.
- W4282584776 cites W3025305522 @default.
- W4282584776 cites W3026085071 @default.
- W4282584776 cites W3026748062 @default.
- W4282584776 cites W3034858522 @default.
- W4282584776 cites W3043975336 @default.
- W4282584776 cites W3044891898 @default.
- W4282584776 cites W3046994873 @default.
- W4282584776 cites W3048032171 @default.
- W4282584776 cites W3048619980 @default.
- W4282584776 cites W3081081984 @default.
- W4282584776 cites W3093068007 @default.
- W4282584776 cites W3093693178 @default.
- W4282584776 cites W3094073641 @default.
- W4282584776 cites W3107124456 @default.
- W4282584776 cites W3112660304 @default.
- W4282584776 cites W3113447854 @default.
- W4282584776 cites W3116070494 @default.
- W4282584776 cites W3119604045 @default.
- W4282584776 cites W3120105983 @default.
- W4282584776 cites W3121971531 @default.
- W4282584776 cites W3122410244 @default.
- W4282584776 cites W3138745635 @default.
- W4282584776 cites W3144611861 @default.
- W4282584776 cites W3158459285 @default.
- W4282584776 cites W3161550517 @default.
- W4282584776 cites W3165656738 @default.
- W4282584776 cites W3171400183 @default.
- W4282584776 cites W3199727813 @default.
- W4282584776 cites W3206714073 @default.
- W4282584776 cites W3207205837 @default.
- W4282584776 cites W4206201635 @default.
- W4282584776 cites W4211151518 @default.
- W4282584776 cites W4220907252 @default.
- W4282584776 cites W2184323843 @default.
- W4282584776 doi "https://doi.org/10.1016/j.ibmed.2022.100065" @default.
- W4282584776 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35721825" @default.
- W4282584776 hasPublicationYear "2022" @default.
- W4282584776 type Work @default.
- W4282584776 citedByCount "1" @default.
- W4282584776 countsByYear W42825847762022 @default.
- W4282584776 crossrefType "journal-article" @default.
- W4282584776 hasAuthorship W4282584776A5008403370 @default.
- W4282584776 hasAuthorship W4282584776A5008680563 @default.
- W4282584776 hasAuthorship W4282584776A5010075041 @default.
- W4282584776 hasAuthorship W4282584776A5019582177 @default.
- W4282584776 hasAuthorship W4282584776A5022667961 @default.
- W4282584776 hasAuthorship W4282584776A5023660328 @default.
- W4282584776 hasAuthorship W4282584776A5035361546 @default.
- W4282584776 hasAuthorship W4282584776A5043305092 @default.
- W4282584776 hasAuthorship W4282584776A5061142822 @default.
- W4282584776 hasAuthorship W4282584776A5080693015 @default.
- W4282584776 hasAuthorship W4282584776A5084395884 @default.
- W4282584776 hasAuthorship W4282584776A5088654181 @default.
- W4282584776 hasAuthorship W4282584776A5089414632 @default.
- W4282584776 hasBestOaLocation W42825847761 @default.
- W4282584776 hasConcept C105795698 @default.