Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282594893> ?p ?o ?g. }
- W4282594893 endingPage "2392" @default.
- W4282594893 startingPage "2373" @default.
- W4282594893 abstract "Volunteered geographic information (VGI) is often cited as a potential solution to persistent global inequalities in map data, particularly in areas undergoing humanitarian crises. Poor volunteer engagement, slow data production, and low-quality outputs have limited progress, however, and can unintentionally exaggerate inequalities. Hybrid machine learning–VGI (ML–VGI) frameworks can help to overcome these challenges through a combination of workflow automation and purposive human input, but the use of these workflows is rare in practice. Here, we implement an ML–VGI framework (Centaur VGI) and undertake a detailed comparative usability assessment against an existing, widely used VGI mapping platform to demonstrate its potential to improve volunteer engagement, mapping speed, and data quality. Our results suggest that through automated building, searching, and labeling, the Centaur VGI platform provides greater usability, quicker data production, and improved data quality for most users. Consequently, we provide the first evidence that hybrid ML–VGI approaches can be used to facilitate increased public participation in humanitarian building mapping efforts and thus help reduce global inequalities in map data." @default.
- W4282594893 created "2022-06-14" @default.
- W4282594893 creator A5014564284 @default.
- W4282594893 creator A5019249741 @default.
- W4282594893 creator A5063666141 @default.
- W4282594893 date "2022-06-13" @default.
- W4282594893 modified "2023-09-27" @default.
- W4282594893 title "Centaur VGI: An Evaluation of Engagement, Speed, and Quality in Hybrid Humanitarian Mapping" @default.
- W4282594893 cites W1531085196 @default.
- W4282594893 cites W2005631279 @default.
- W4282594893 cites W2063935068 @default.
- W4282594893 cites W2065436019 @default.
- W4282594893 cites W2071766602 @default.
- W4282594893 cites W2076372637 @default.
- W4282594893 cites W2079034190 @default.
- W4282594893 cites W2116597721 @default.
- W4282594893 cites W2167855612 @default.
- W4282594893 cites W2233491612 @default.
- W4282594893 cites W2282616409 @default.
- W4282594893 cites W2299072670 @default.
- W4282594893 cites W2398931644 @default.
- W4282594893 cites W2491230513 @default.
- W4282594893 cites W2511344124 @default.
- W4282594893 cites W2549412929 @default.
- W4282594893 cites W2587871275 @default.
- W4282594893 cites W2591665118 @default.
- W4282594893 cites W2618294772 @default.
- W4282594893 cites W2622737669 @default.
- W4282594893 cites W2625598969 @default.
- W4282594893 cites W2793753603 @default.
- W4282594893 cites W2796134555 @default.
- W4282594893 cites W2804449020 @default.
- W4282594893 cites W2807818819 @default.
- W4282594893 cites W2808322255 @default.
- W4282594893 cites W2894776549 @default.
- W4282594893 cites W2900464026 @default.
- W4282594893 cites W2905332579 @default.
- W4282594893 cites W2906930825 @default.
- W4282594893 cites W2921743396 @default.
- W4282594893 cites W2946303255 @default.
- W4282594893 cites W2966851014 @default.
- W4282594893 cites W2982994871 @default.
- W4282594893 cites W3004700277 @default.
- W4282594893 cites W3011673163 @default.
- W4282594893 cites W3015794857 @default.
- W4282594893 cites W3034116577 @default.
- W4282594893 cites W3047579825 @default.
- W4282594893 cites W3104833050 @default.
- W4282594893 cites W3106346389 @default.
- W4282594893 cites W3128000984 @default.
- W4282594893 cites W3133545925 @default.
- W4282594893 cites W3172486189 @default.
- W4282594893 doi "https://doi.org/10.1080/24694452.2022.2058907" @default.
- W4282594893 hasPublicationYear "2022" @default.
- W4282594893 type Work @default.
- W4282594893 citedByCount "2" @default.
- W4282594893 countsByYear W42825948932022 @default.
- W4282594893 countsByYear W42825948932023 @default.
- W4282594893 crossrefType "journal-article" @default.
- W4282594893 hasAuthorship W4282594893A5014564284 @default.
- W4282594893 hasAuthorship W4282594893A5019249741 @default.
- W4282594893 hasAuthorship W4282594893A5063666141 @default.
- W4282594893 hasConcept C107457646 @default.
- W4282594893 hasConcept C127413603 @default.
- W4282594893 hasConcept C136764020 @default.
- W4282594893 hasConcept C170130773 @default.
- W4282594893 hasConcept C176217482 @default.
- W4282594893 hasConcept C177212765 @default.
- W4282594893 hasConcept C197352329 @default.
- W4282594893 hasConcept C21547014 @default.
- W4282594893 hasConcept C24756922 @default.
- W4282594893 hasConcept C2522767166 @default.
- W4282594893 hasConcept C41008148 @default.
- W4282594893 hasConcept C57380593 @default.
- W4282594893 hasConcept C59822182 @default.
- W4282594893 hasConcept C62230096 @default.
- W4282594893 hasConcept C77088390 @default.
- W4282594893 hasConcept C86803240 @default.
- W4282594893 hasConceptScore W4282594893C107457646 @default.
- W4282594893 hasConceptScore W4282594893C127413603 @default.
- W4282594893 hasConceptScore W4282594893C136764020 @default.
- W4282594893 hasConceptScore W4282594893C170130773 @default.
- W4282594893 hasConceptScore W4282594893C176217482 @default.
- W4282594893 hasConceptScore W4282594893C177212765 @default.
- W4282594893 hasConceptScore W4282594893C197352329 @default.
- W4282594893 hasConceptScore W4282594893C21547014 @default.
- W4282594893 hasConceptScore W4282594893C24756922 @default.
- W4282594893 hasConceptScore W4282594893C2522767166 @default.
- W4282594893 hasConceptScore W4282594893C41008148 @default.
- W4282594893 hasConceptScore W4282594893C57380593 @default.
- W4282594893 hasConceptScore W4282594893C59822182 @default.
- W4282594893 hasConceptScore W4282594893C62230096 @default.
- W4282594893 hasConceptScore W4282594893C77088390 @default.
- W4282594893 hasConceptScore W4282594893C86803240 @default.
- W4282594893 hasIssue "8" @default.
- W4282594893 hasLocation W42825948931 @default.
- W4282594893 hasOpenAccess W4282594893 @default.
- W4282594893 hasPrimaryLocation W42825948931 @default.