Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282828305> ?p ?o ?g. }
- W4282828305 endingPage "6658" @default.
- W4282828305 startingPage "6626" @default.
- W4282828305 abstract "Nanofluids have gained significant popularity in the field of sustainable and renewable energy systems. The heat transfer capacity of the working fluid has a huge impact on the efficiency of the renewable energy system. The addition of a small amount of high thermal conductivity solid nanoparticles to a base fluid improves heat transfer. Even though a large amount of research data is available in the literature, some results are contradictory. Many influencing factors, as well as nonlinearity and refutations, make nanofluid research highly challenging and obstruct its potentially valuable uses. On the other hand, data-driven machine learning techniques would be very useful in nanofluid research for forecasting thermophysical features and heat transfer rate, identifying the most influential factors, and assessing the efficiencies of different renewable energy systems. The primary aim of this review study is to look at the features and applications of different machine learning techniques employed in the nanofluid-based renewable energy system, as well as to reveal new developments in machine learning research. A variety of modern machine learning algorithms for nanofluid-based heat transfer studies in renewable and sustainable energy systems are examined, along with their advantages and disadvantages. Artificial neural networks-based model prediction using contemporary commercial software is simple to develop and the most popular. The prognostic capacity may be further improved by combining a marine predator algorithm, genetic algorithm, swarm intelligence optimization, and other intelligent optimization approaches. In addition to the well-known neural networks and fuzzy- and gene-based machine learning techniques, newer ensemble machine learning techniques such as Boosted regression techniques, K-means, K-nearest neighbor (KNN), CatBoost, and XGBoost are gaining popularity due to their improved architectures and adaptabilities to diverse data types. The regularly used neural networks and fuzzy-based algorithms are mostly black-box methods, with the user having little or no understanding of how they function. This is the reason for concern, and ethical artificial intelligence is required." @default.
- W4282828305 created "2022-06-15" @default.
- W4282828305 creator A5003625164 @default.
- W4282828305 creator A5021519344 @default.
- W4282828305 creator A5028114748 @default.
- W4282828305 creator A5037073589 @default.
- W4282828305 creator A5040989384 @default.
- W4282828305 creator A5042376108 @default.
- W4282828305 creator A5047802575 @default.
- W4282828305 creator A5054486481 @default.
- W4282828305 creator A5058357528 @default.
- W4282828305 creator A5066581436 @default.
- W4282828305 creator A5070311264 @default.
- W4282828305 creator A5075212141 @default.
- W4282828305 date "2022-06-13" @default.
- W4282828305 modified "2023-10-12" @default.
- W4282828305 title "Recent Advances in Machine Learning Research for Nanofluid-Based Heat Transfer in Renewable Energy System" @default.
- W4282828305 cites W1978317922 @default.
- W4282828305 cites W1982341037 @default.
- W4282828305 cites W1982751286 @default.
- W4282828305 cites W1982851128 @default.
- W4282828305 cites W1985413759 @default.
- W4282828305 cites W1985517559 @default.
- W4282828305 cites W1989368732 @default.
- W4282828305 cites W1992534090 @default.
- W4282828305 cites W1992880908 @default.
- W4282828305 cites W1994988490 @default.
- W4282828305 cites W1995621929 @default.
- W4282828305 cites W2005744767 @default.
- W4282828305 cites W2006397502 @default.
- W4282828305 cites W2013694678 @default.
- W4282828305 cites W2019465497 @default.
- W4282828305 cites W2024666608 @default.
- W4282828305 cites W2025561300 @default.
- W4282828305 cites W2031217530 @default.
- W4282828305 cites W2033193055 @default.
- W4282828305 cites W2039712196 @default.
- W4282828305 cites W2041112898 @default.
- W4282828305 cites W2042935301 @default.
- W4282828305 cites W2053511129 @default.
- W4282828305 cites W2063213170 @default.
- W4282828305 cites W2064476658 @default.
- W4282828305 cites W2064675550 @default.
- W4282828305 cites W2066511080 @default.
- W4282828305 cites W2068889184 @default.
- W4282828305 cites W2080165911 @default.
- W4282828305 cites W2082915880 @default.
- W4282828305 cites W2094986404 @default.
- W4282828305 cites W2095593761 @default.
- W4282828305 cites W2096220539 @default.
- W4282828305 cites W2106487632 @default.
- W4282828305 cites W2113442785 @default.
- W4282828305 cites W2126504893 @default.
- W4282828305 cites W2147306489 @default.
- W4282828305 cites W2174639107 @default.
- W4282828305 cites W2176406782 @default.
- W4282828305 cites W2192105744 @default.
- W4282828305 cites W2202370349 @default.
- W4282828305 cites W2256004185 @default.
- W4282828305 cites W2286063976 @default.
- W4282828305 cites W2293757282 @default.
- W4282828305 cites W2303305852 @default.
- W4282828305 cites W2320410120 @default.
- W4282828305 cites W2323298684 @default.
- W4282828305 cites W2331064587 @default.
- W4282828305 cites W2338227759 @default.
- W4282828305 cites W2345504093 @default.
- W4282828305 cites W2473490014 @default.
- W4282828305 cites W2498611607 @default.
- W4282828305 cites W2511341525 @default.
- W4282828305 cites W2515929641 @default.
- W4282828305 cites W2519485646 @default.
- W4282828305 cites W2524706580 @default.
- W4282828305 cites W2554996270 @default.
- W4282828305 cites W2559858966 @default.
- W4282828305 cites W2560025721 @default.
- W4282828305 cites W2566377682 @default.
- W4282828305 cites W2569349941 @default.
- W4282828305 cites W2569655181 @default.
- W4282828305 cites W2586828959 @default.
- W4282828305 cites W2586863128 @default.
- W4282828305 cites W2590917804 @default.
- W4282828305 cites W2598262098 @default.
- W4282828305 cites W2599117839 @default.
- W4282828305 cites W2602194826 @default.
- W4282828305 cites W2607469507 @default.
- W4282828305 cites W2609285363 @default.
- W4282828305 cites W2614185059 @default.
- W4282828305 cites W2615016734 @default.
- W4282828305 cites W2724524595 @default.
- W4282828305 cites W2743161031 @default.
- W4282828305 cites W2751046327 @default.
- W4282828305 cites W2751504224 @default.
- W4282828305 cites W2753111291 @default.
- W4282828305 cites W2763617369 @default.
- W4282828305 cites W2763814865 @default.
- W4282828305 cites W2765554657 @default.
- W4282828305 cites W2767559196 @default.