Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282830156> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4282830156 endingPage "1645" @default.
- W4282830156 startingPage "1626" @default.
- W4282830156 abstract "Abstract Modern wind turbines have multiple sensors installed and provide constant data stream outputs; however, there are some important quantities where installing physical sensors is either impractical or the sensor technology is not sufficiently advanced. An example of such a problem is, for example, sensing the shape and location of wake‐induced wind deficits caused by upwind turbines—a feature which would have relevant application in wind farm control; however, it is hard to detect physically due to the need of scanning the airflow in front of the turbine in multiple locations. Another control‐related example is monitoring and predicting the blade tip‐tower clearance. A “virtual sensor” can be created instead, by establishing a mathematical relationship between the quantity of interest and other, measurable quantities such as readings from already available sensors (e.g., SCADA, lidars, and met‐masts). Machine Learning (ML) approaches are suitable for this task as ML algorithms are capable of learning and representing complex relationships. This study details the concept of ML‐based virtual sensors and showcases three specific examples: blade root bending moment prediction, detection of wind turbine wake center location, and forecasting of blade tip‐tower clearance. All examples utilize sequence models (Long Short‐Term Memory, LSTM) and use aeroelastic load simulations to generate wind turbine response time series and test model performance. The data types used in the examples correspond to channels that would be available from high‐frequency SCADA data combined with a blade and tower load measurement system. The resulting model performance demonstrates the feasibility of the ML‐based virtual sensor approach." @default.
- W4282830156 created "2022-06-15" @default.
- W4282830156 creator A5020725031 @default.
- W4282830156 creator A5024845541 @default.
- W4282830156 date "2022-06-14" @default.
- W4282830156 modified "2023-10-11" @default.
- W4282830156 title "Virtual sensors for wind turbines with machine learning‐based time series models" @default.
- W4282830156 cites W1981768047 @default.
- W4282830156 cites W1984153764 @default.
- W4282830156 cites W2131794337 @default.
- W4282830156 cites W2143544468 @default.
- W4282830156 cites W2147253673 @default.
- W4282830156 cites W2734629348 @default.
- W4282830156 cites W2759410013 @default.
- W4282830156 cites W2791665747 @default.
- W4282830156 cites W2808934700 @default.
- W4282830156 cites W2898596872 @default.
- W4282830156 cites W2915557492 @default.
- W4282830156 cites W2963311488 @default.
- W4282830156 cites W2963631595 @default.
- W4282830156 cites W2964075562 @default.
- W4282830156 cites W2964620392 @default.
- W4282830156 cites W2987725861 @default.
- W4282830156 cites W2989677977 @default.
- W4282830156 cites W3005815064 @default.
- W4282830156 cites W3012550143 @default.
- W4282830156 cites W3088107726 @default.
- W4282830156 cites W3088868183 @default.
- W4282830156 cites W3093563925 @default.
- W4282830156 cites W3126398979 @default.
- W4282830156 cites W3177301710 @default.
- W4282830156 cites W3205509077 @default.
- W4282830156 doi "https://doi.org/10.1002/we.2762" @default.
- W4282830156 hasPublicationYear "2022" @default.
- W4282830156 type Work @default.
- W4282830156 citedByCount "3" @default.
- W4282830156 countsByYear W42828301562023 @default.
- W4282830156 crossrefType "journal-article" @default.
- W4282830156 hasAuthorship W4282830156A5020725031 @default.
- W4282830156 hasAuthorship W4282830156A5024845541 @default.
- W4282830156 hasBestOaLocation W42828301563 @default.
- W4282830156 hasConcept C113863187 @default.
- W4282830156 hasConcept C119599485 @default.
- W4282830156 hasConcept C127413603 @default.
- W4282830156 hasConcept C146978453 @default.
- W4282830156 hasConcept C199104240 @default.
- W4282830156 hasConcept C20381859 @default.
- W4282830156 hasConcept C2777831296 @default.
- W4282830156 hasConcept C2778449969 @default.
- W4282830156 hasConcept C41008148 @default.
- W4282830156 hasConcept C44154836 @default.
- W4282830156 hasConcept C48939323 @default.
- W4282830156 hasConcept C66938386 @default.
- W4282830156 hasConcept C78600449 @default.
- W4282830156 hasConceptScore W4282830156C113863187 @default.
- W4282830156 hasConceptScore W4282830156C119599485 @default.
- W4282830156 hasConceptScore W4282830156C127413603 @default.
- W4282830156 hasConceptScore W4282830156C146978453 @default.
- W4282830156 hasConceptScore W4282830156C199104240 @default.
- W4282830156 hasConceptScore W4282830156C20381859 @default.
- W4282830156 hasConceptScore W4282830156C2777831296 @default.
- W4282830156 hasConceptScore W4282830156C2778449969 @default.
- W4282830156 hasConceptScore W4282830156C41008148 @default.
- W4282830156 hasConceptScore W4282830156C44154836 @default.
- W4282830156 hasConceptScore W4282830156C48939323 @default.
- W4282830156 hasConceptScore W4282830156C66938386 @default.
- W4282830156 hasConceptScore W4282830156C78600449 @default.
- W4282830156 hasIssue "9" @default.
- W4282830156 hasLocation W42828301561 @default.
- W4282830156 hasLocation W42828301562 @default.
- W4282830156 hasLocation W42828301563 @default.
- W4282830156 hasOpenAccess W4282830156 @default.
- W4282830156 hasPrimaryLocation W42828301561 @default.
- W4282830156 hasRelatedWork W1985762154 @default.
- W4282830156 hasRelatedWork W2051217973 @default.
- W4282830156 hasRelatedWork W2885523149 @default.
- W4282830156 hasRelatedWork W3042168842 @default.
- W4282830156 hasRelatedWork W4210348035 @default.
- W4282830156 hasRelatedWork W4249901449 @default.
- W4282830156 hasRelatedWork W4312814626 @default.
- W4282830156 hasRelatedWork W4323074350 @default.
- W4282830156 hasRelatedWork W4323981165 @default.
- W4282830156 hasRelatedWork W4365815425 @default.
- W4282830156 hasVolume "25" @default.
- W4282830156 isParatext "false" @default.
- W4282830156 isRetracted "false" @default.
- W4282830156 workType "article" @default.