Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282842522> ?p ?o ?g. }
- W4282842522 endingPage "23475" @default.
- W4282842522 startingPage "23475" @default.
- W4282842522 abstract "Ghost imaging (GI) illuminates an object with a sequence of light patterns and obtains the corresponding total echo intensities with a bucket detector. The correlation between the patterns and the bucket signals results in the image. Due to such a mechanism different from the traditional imaging methods, GI has received extensive attention during the past two decades. However, this mechanism also makes GI suffer from slow imaging speed and poor imaging quality. In previous work, each sample, including an illumination pattern and its detected bucket signal, was treated independently with each other. The correlation is therefore a linear superposition of the sequential data. Inspired by human's speech, where sequential words are linked with each other by a certain semantic logic and an incomplete sentence could still convey a correct meaning, we here propose a different perspective that there is potentially a non-linear connection between the sequential samples in GI. We therefore built a system based on a recurrent neural network (RNN), called GI-RNN, which enables recovering high-quality images at low sampling rates. The test with MNIST's handwriting numbers shows that, under a sampling rate of 1.28%, GI-RNN have a 12.58 dB higher than the traditional basic correlation algorithm and a 6.61 dB higher than compressed sensing algorithm in image quality. After trained with natural images, GI-RNN exhibits a strong generalization ability. Not only does GI-RNN work well with the standard images such as cameraman, but also it can recover the natural scenes in reality at the 3% sampling rate while the SSIMs are greater than 0.7." @default.
- W4282842522 created "2022-06-15" @default.
- W4282842522 creator A5004188371 @default.
- W4282842522 creator A5025955509 @default.
- W4282842522 creator A5055838753 @default.
- W4282842522 creator A5057601184 @default.
- W4282842522 creator A5073946566 @default.
- W4282842522 creator A5078460786 @default.
- W4282842522 date "2022-06-13" @default.
- W4282842522 modified "2023-10-05" @default.
- W4282842522 title "Semantic ghost imaging based on recurrent-neural-network" @default.
- W4282842522 cites W1906770428 @default.
- W4282842522 cites W1970010076 @default.
- W4282842522 cites W1982460509 @default.
- W4282842522 cites W1998688147 @default.
- W4282842522 cites W2012217721 @default.
- W4282842522 cites W2017262690 @default.
- W4282842522 cites W2035638038 @default.
- W4282842522 cites W2059479071 @default.
- W4282842522 cites W2076541487 @default.
- W4282842522 cites W2090475034 @default.
- W4282842522 cites W2226483589 @default.
- W4282842522 cites W2268001816 @default.
- W4282842522 cites W2404011284 @default.
- W4282842522 cites W2508322192 @default.
- W4282842522 cites W2508457857 @default.
- W4282842522 cites W2531183959 @default.
- W4282842522 cites W2580767461 @default.
- W4282842522 cites W2763190499 @default.
- W4282842522 cites W2766992522 @default.
- W4282842522 cites W2772609332 @default.
- W4282842522 cites W2794318235 @default.
- W4282842522 cites W2800209654 @default.
- W4282842522 cites W2897261178 @default.
- W4282842522 cites W2962817839 @default.
- W4282842522 cites W2970610508 @default.
- W4282842522 cites W2981934332 @default.
- W4282842522 cites W3001840880 @default.
- W4282842522 cites W3018154372 @default.
- W4282842522 cites W3022618928 @default.
- W4282842522 cites W3044084828 @default.
- W4282842522 cites W3097187472 @default.
- W4282842522 cites W3102611568 @default.
- W4282842522 cites W3112796718 @default.
- W4282842522 cites W3156653039 @default.
- W4282842522 cites W3160994029 @default.
- W4282842522 cites W3163409365 @default.
- W4282842522 cites W3208822973 @default.
- W4282842522 cites W4213078347 @default.
- W4282842522 cites W2809983298 @default.
- W4282842522 doi "https://doi.org/10.1364/oe.458345" @default.
- W4282842522 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36225026" @default.
- W4282842522 hasPublicationYear "2022" @default.
- W4282842522 type Work @default.
- W4282842522 citedByCount "8" @default.
- W4282842522 countsByYear W42828425222022 @default.
- W4282842522 countsByYear W42828425222023 @default.
- W4282842522 crossrefType "journal-article" @default.
- W4282842522 hasAuthorship W4282842522A5004188371 @default.
- W4282842522 hasAuthorship W4282842522A5025955509 @default.
- W4282842522 hasAuthorship W4282842522A5055838753 @default.
- W4282842522 hasAuthorship W4282842522A5057601184 @default.
- W4282842522 hasAuthorship W4282842522A5073946566 @default.
- W4282842522 hasAuthorship W4282842522A5078460786 @default.
- W4282842522 hasBestOaLocation W42828425221 @default.
- W4282842522 hasConcept C11413529 @default.
- W4282842522 hasConcept C115961682 @default.
- W4282842522 hasConcept C134306372 @default.
- W4282842522 hasConcept C140779682 @default.
- W4282842522 hasConcept C147168706 @default.
- W4282842522 hasConcept C153180895 @default.
- W4282842522 hasConcept C154945302 @default.
- W4282842522 hasConcept C177148314 @default.
- W4282842522 hasConcept C31972630 @default.
- W4282842522 hasConcept C33923547 @default.
- W4282842522 hasConcept C41008148 @default.
- W4282842522 hasConcept C50644808 @default.
- W4282842522 hasConcept C55020928 @default.
- W4282842522 hasConcept C76155785 @default.
- W4282842522 hasConcept C94915269 @default.
- W4282842522 hasConceptScore W4282842522C11413529 @default.
- W4282842522 hasConceptScore W4282842522C115961682 @default.
- W4282842522 hasConceptScore W4282842522C134306372 @default.
- W4282842522 hasConceptScore W4282842522C140779682 @default.
- W4282842522 hasConceptScore W4282842522C147168706 @default.
- W4282842522 hasConceptScore W4282842522C153180895 @default.
- W4282842522 hasConceptScore W4282842522C154945302 @default.
- W4282842522 hasConceptScore W4282842522C177148314 @default.
- W4282842522 hasConceptScore W4282842522C31972630 @default.
- W4282842522 hasConceptScore W4282842522C33923547 @default.
- W4282842522 hasConceptScore W4282842522C41008148 @default.
- W4282842522 hasConceptScore W4282842522C50644808 @default.
- W4282842522 hasConceptScore W4282842522C55020928 @default.
- W4282842522 hasConceptScore W4282842522C76155785 @default.
- W4282842522 hasConceptScore W4282842522C94915269 @default.
- W4282842522 hasFunder F4320321001 @default.
- W4282842522 hasFunder F4320327912 @default.
- W4282842522 hasFunder F4320335787 @default.