Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282842523> ?p ?o ?g. }
- W4282842523 endingPage "8" @default.
- W4282842523 startingPage "1" @default.
- W4282842523 abstract "Detecting the breakdown of industrial IoT devices is a major challenge. Despite these challenges, real-time sensor data from the industrial internet of things (IIoT) present several advantages, such as the ability to monitor and respond to events in real time. Sensor statistics from the IIoT can be processed, fused with other data sources, and used for rapid decision-making. The study also discusses how to manage denoising, missing data imputation, and outlier discovery using preprocessing. After that, data fusion techniques like the direct fusion technique are used to combine the cleaned sensor data. Fault detection in the IIoT can be accomplished by using a variety of deep learning models such as PropensityNet, deep neural network (DNN), and convolution neural networks-long short term memory network (CNS-LSTM). According to various outcomes, the suggested model is tested with Case Western Reserve University (CWRU) data. The results suggest that the method is viable and has a good level of accuracy and efficiency." @default.
- W4282842523 created "2022-06-15" @default.
- W4282842523 creator A5017008826 @default.
- W4282842523 creator A5035275205 @default.
- W4282842523 creator A5049982609 @default.
- W4282842523 creator A5061790878 @default.
- W4282842523 creator A5063439617 @default.
- W4282842523 creator A5068883308 @default.
- W4282842523 creator A5071434295 @default.
- W4282842523 date "2022-06-14" @default.
- W4282842523 modified "2023-09-27" @default.
- W4282842523 title "Fault Diagnosis Using Data Fusion with Ensemble Deep Learning Technique in IIoT" @default.
- W4282842523 cites W1978695314 @default.
- W4282842523 cites W2064675550 @default.
- W4282842523 cites W2100358124 @default.
- W4282842523 cites W2139075905 @default.
- W4282842523 cites W2159808897 @default.
- W4282842523 cites W2163922914 @default.
- W4282842523 cites W2587885302 @default.
- W4282842523 cites W2588941434 @default.
- W4282842523 cites W2741289421 @default.
- W4282842523 cites W2792802604 @default.
- W4282842523 cites W2885073745 @default.
- W4282842523 cites W2900147861 @default.
- W4282842523 cites W2944122571 @default.
- W4282842523 cites W2955457458 @default.
- W4282842523 cites W2965159169 @default.
- W4282842523 cites W2981407200 @default.
- W4282842523 cites W2985025058 @default.
- W4282842523 cites W2986556050 @default.
- W4282842523 cites W2993703694 @default.
- W4282842523 cites W3004178587 @default.
- W4282842523 cites W3011401495 @default.
- W4282842523 cites W3016604868 @default.
- W4282842523 cites W3036387842 @default.
- W4282842523 cites W3099078708 @default.
- W4282842523 cites W3108577147 @default.
- W4282842523 cites W3170591781 @default.
- W4282842523 cites W3203496010 @default.
- W4282842523 cites W4206182892 @default.
- W4282842523 doi "https://doi.org/10.1155/2022/1682874" @default.
- W4282842523 hasPublicationYear "2022" @default.
- W4282842523 type Work @default.
- W4282842523 citedByCount "7" @default.
- W4282842523 countsByYear W42828425232022 @default.
- W4282842523 countsByYear W42828425232023 @default.
- W4282842523 crossrefType "journal-article" @default.
- W4282842523 hasAuthorship W4282842523A5017008826 @default.
- W4282842523 hasAuthorship W4282842523A5035275205 @default.
- W4282842523 hasAuthorship W4282842523A5049982609 @default.
- W4282842523 hasAuthorship W4282842523A5061790878 @default.
- W4282842523 hasAuthorship W4282842523A5063439617 @default.
- W4282842523 hasAuthorship W4282842523A5068883308 @default.
- W4282842523 hasAuthorship W4282842523A5071434295 @default.
- W4282842523 hasBestOaLocation W42828425231 @default.
- W4282842523 hasConcept C10551718 @default.
- W4282842523 hasConcept C108583219 @default.
- W4282842523 hasConcept C119857082 @default.
- W4282842523 hasConcept C124101348 @default.
- W4282842523 hasConcept C153180895 @default.
- W4282842523 hasConcept C154945302 @default.
- W4282842523 hasConcept C33954974 @default.
- W4282842523 hasConcept C34736171 @default.
- W4282842523 hasConcept C41008148 @default.
- W4282842523 hasConcept C50644808 @default.
- W4282842523 hasConcept C58041806 @default.
- W4282842523 hasConcept C739882 @default.
- W4282842523 hasConcept C79337645 @default.
- W4282842523 hasConcept C9357733 @default.
- W4282842523 hasConceptScore W4282842523C10551718 @default.
- W4282842523 hasConceptScore W4282842523C108583219 @default.
- W4282842523 hasConceptScore W4282842523C119857082 @default.
- W4282842523 hasConceptScore W4282842523C124101348 @default.
- W4282842523 hasConceptScore W4282842523C153180895 @default.
- W4282842523 hasConceptScore W4282842523C154945302 @default.
- W4282842523 hasConceptScore W4282842523C33954974 @default.
- W4282842523 hasConceptScore W4282842523C34736171 @default.
- W4282842523 hasConceptScore W4282842523C41008148 @default.
- W4282842523 hasConceptScore W4282842523C50644808 @default.
- W4282842523 hasConceptScore W4282842523C58041806 @default.
- W4282842523 hasConceptScore W4282842523C739882 @default.
- W4282842523 hasConceptScore W4282842523C79337645 @default.
- W4282842523 hasConceptScore W4282842523C9357733 @default.
- W4282842523 hasLocation W42828425231 @default.
- W4282842523 hasOpenAccess W4282842523 @default.
- W4282842523 hasPrimaryLocation W42828425231 @default.
- W4282842523 hasRelatedWork W2784019465 @default.
- W4282842523 hasRelatedWork W2807600438 @default.
- W4282842523 hasRelatedWork W2999081408 @default.
- W4282842523 hasRelatedWork W3092506759 @default.
- W4282842523 hasRelatedWork W3136396548 @default.
- W4282842523 hasRelatedWork W3170920059 @default.
- W4282842523 hasRelatedWork W4200420744 @default.
- W4282842523 hasRelatedWork W4237962661 @default.
- W4282842523 hasRelatedWork W4248881655 @default.
- W4282842523 hasRelatedWork W2566086483 @default.
- W4282842523 hasVolume "2022" @default.
- W4282842523 isParatext "false" @default.