Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282912887> ?p ?o ?g. }
- W4282912887 endingPage "1466" @default.
- W4282912887 startingPage "1466" @default.
- W4282912887 abstract "The prediction of obstructive atherosclerotic disease has significant clinical meaning for the decision making. In this study, a machine learning predictive model based on gradient boosting classifier is presented, aiming to identify the patients of high CAD risk and those of low CAD risk. The machine learning methodology includes five steps: the preprocessing of the input data, the class imbalance handling applying the Easy Ensemble algorithm, the recursive feature elimination technique implementation, the implementation of gradient boosting classifier, and finally the model evaluation, while the fine tuning of the presented model was implemented through a randomized search optimization of the model's hyper-parameters over an internal 3-fold cross-validation. In total, 187 participants with suspicion of CAD previously underwent CTCA during EVINCI and ARTreat clinical studies and were prospectively included to undergo follow-up CTCA. The predictive model was trained using imaging data (geometrical and blood flow based) and non-imaging data. The overall predictive accuracy of the model was 0.81, using both imaging and non-imaging data. The innovative aspect of the proposed study is the combination of imaging-based data with the typical CAD risk factors to provide an integrated CAD risk-predictive model." @default.
- W4282912887 created "2022-06-16" @default.
- W4282912887 creator A5006772835 @default.
- W4282912887 creator A5009035288 @default.
- W4282912887 creator A5012730614 @default.
- W4282912887 creator A5013751722 @default.
- W4282912887 creator A5021543870 @default.
- W4282912887 creator A5026778314 @default.
- W4282912887 creator A5042723074 @default.
- W4282912887 creator A5051993036 @default.
- W4282912887 creator A5060566170 @default.
- W4282912887 creator A5061163769 @default.
- W4282912887 creator A5067763637 @default.
- W4282912887 creator A5079931924 @default.
- W4282912887 creator A5088260638 @default.
- W4282912887 date "2022-06-14" @default.
- W4282912887 modified "2023-09-26" @default.
- W4282912887 title "Machine Learning Coronary Artery Disease Prediction Based on Imaging and Non-Imaging Data" @default.
- W4282912887 cites W1678356000 @default.
- W4282912887 cites W1964055985 @default.
- W4282912887 cites W1964828756 @default.
- W4282912887 cites W1980177930 @default.
- W4282912887 cites W2054544120 @default.
- W4282912887 cites W2062044444 @default.
- W4282912887 cites W2084768640 @default.
- W4282912887 cites W2089682360 @default.
- W4282912887 cites W2104005681 @default.
- W4282912887 cites W2104167780 @default.
- W4282912887 cites W2107165713 @default.
- W4282912887 cites W2113761802 @default.
- W4282912887 cites W2120995715 @default.
- W4282912887 cites W2124101478 @default.
- W4282912887 cites W2143426320 @default.
- W4282912887 cites W2148092884 @default.
- W4282912887 cites W2152705713 @default.
- W4282912887 cites W2188834495 @default.
- W4282912887 cites W2278313487 @default.
- W4282912887 cites W2307170589 @default.
- W4282912887 cites W2408866005 @default.
- W4282912887 cites W2422494935 @default.
- W4282912887 cites W2464987835 @default.
- W4282912887 cites W2496911238 @default.
- W4282912887 cites W2499509962 @default.
- W4282912887 cites W2605253636 @default.
- W4282912887 cites W2743269518 @default.
- W4282912887 cites W2754934434 @default.
- W4282912887 cites W2765913720 @default.
- W4282912887 cites W2766110453 @default.
- W4282912887 cites W2799913286 @default.
- W4282912887 cites W2895958226 @default.
- W4282912887 cites W2952819244 @default.
- W4282912887 cites W2970572493 @default.
- W4282912887 cites W2971505599 @default.
- W4282912887 cites W3005006611 @default.
- W4282912887 cites W3100890002 @default.
- W4282912887 cites W3134632592 @default.
- W4282912887 cites W4226147489 @default.
- W4282912887 cites W4229049814 @default.
- W4282912887 cites W4256714814 @default.
- W4282912887 doi "https://doi.org/10.3390/diagnostics12061466" @default.
- W4282912887 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35741275" @default.
- W4282912887 hasPublicationYear "2022" @default.
- W4282912887 type Work @default.
- W4282912887 citedByCount "1" @default.
- W4282912887 countsByYear W42829128872023 @default.
- W4282912887 crossrefType "journal-article" @default.
- W4282912887 hasAuthorship W4282912887A5006772835 @default.
- W4282912887 hasAuthorship W4282912887A5009035288 @default.
- W4282912887 hasAuthorship W4282912887A5012730614 @default.
- W4282912887 hasAuthorship W4282912887A5013751722 @default.
- W4282912887 hasAuthorship W4282912887A5021543870 @default.
- W4282912887 hasAuthorship W4282912887A5026778314 @default.
- W4282912887 hasAuthorship W4282912887A5042723074 @default.
- W4282912887 hasAuthorship W4282912887A5051993036 @default.
- W4282912887 hasAuthorship W4282912887A5060566170 @default.
- W4282912887 hasAuthorship W4282912887A5061163769 @default.
- W4282912887 hasAuthorship W4282912887A5067763637 @default.
- W4282912887 hasAuthorship W4282912887A5079931924 @default.
- W4282912887 hasAuthorship W4282912887A5088260638 @default.
- W4282912887 hasBestOaLocation W42829128871 @default.
- W4282912887 hasConcept C10551718 @default.
- W4282912887 hasConcept C119857082 @default.
- W4282912887 hasConcept C126322002 @default.
- W4282912887 hasConcept C127413603 @default.
- W4282912887 hasConcept C153180895 @default.
- W4282912887 hasConcept C154945302 @default.
- W4282912887 hasConcept C194789388 @default.
- W4282912887 hasConcept C199639397 @default.
- W4282912887 hasConcept C2778213512 @default.
- W4282912887 hasConcept C34736171 @default.
- W4282912887 hasConcept C41008148 @default.
- W4282912887 hasConcept C45804977 @default.
- W4282912887 hasConcept C46686674 @default.
- W4282912887 hasConcept C71924100 @default.
- W4282912887 hasConcept C95623464 @default.
- W4282912887 hasConceptScore W4282912887C10551718 @default.
- W4282912887 hasConceptScore W4282912887C119857082 @default.
- W4282912887 hasConceptScore W4282912887C126322002 @default.