Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282912952> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4282912952 endingPage "67" @default.
- W4282912952 startingPage "59" @default.
- W4282912952 abstract "Reduced-order modeling based on projection-driven neural network (PDNN) generally needs sufficient data set while physics-informed machine learning (PINN) and physics-reinforced neural network (PRNN) take the reduced order systems into consideration. However, the physics-informed machine learning technique used in these two methods gives rise to expensive time consumption for complex neural network, higher reduced basis and a large amount of residual points. With understanding of PDNN, PINN and PRNN, a model-based neural network (MBNN) is proposed to cope with nonlinear parabolic partial differential equations (PDEs) without source terms. Compared with PINN, the fully discrete scheme of PDEs is adopted to avoid expensive cost for automatic differentiation technique. Moreover, initial conditions at residual points in parameter space are added to loss function with a proper proportion. Since the reduced order equation is taken into account, the proposed MBNN can predict solutions in a larger time range than the time range to which the snapshot belongs. Numerical results show that MBNN achieves better performance than the projection-driven neural network. Generally, the proposed method for lower order reduction can get a consistent L2 error with POD after the convergent tolerance is reached." @default.
- W4282912952 created "2022-06-16" @default.
- W4282912952 creator A5017535979 @default.
- W4282912952 creator A5028639093 @default.
- W4282912952 creator A5035701638 @default.
- W4282912952 creator A5056904374 @default.
- W4282912952 date "2022-08-01" @default.
- W4282912952 modified "2023-10-17" @default.
- W4282912952 title "A non-intrusive neural network model order reduction algorithm for parameterized parabolic PDEs" @default.
- W4282912952 cites W2049753327 @default.
- W4282912952 cites W2766298346 @default.
- W4282912952 cites W2772709428 @default.
- W4282912952 cites W2809491586 @default.
- W4282912952 cites W2885469054 @default.
- W4282912952 cites W3033210176 @default.
- W4282912952 cites W3099969702 @default.
- W4282912952 cites W3123883114 @default.
- W4282912952 cites W3199437557 @default.
- W4282912952 cites W3212711897 @default.
- W4282912952 doi "https://doi.org/10.1016/j.camwa.2022.05.035" @default.
- W4282912952 hasPublicationYear "2022" @default.
- W4282912952 type Work @default.
- W4282912952 citedByCount "2" @default.
- W4282912952 countsByYear W42829129522022 @default.
- W4282912952 countsByYear W42829129522023 @default.
- W4282912952 crossrefType "journal-article" @default.
- W4282912952 hasAuthorship W4282912952A5017535979 @default.
- W4282912952 hasAuthorship W4282912952A5028639093 @default.
- W4282912952 hasAuthorship W4282912952A5035701638 @default.
- W4282912952 hasAuthorship W4282912952A5056904374 @default.
- W4282912952 hasConcept C111335779 @default.
- W4282912952 hasConcept C11413529 @default.
- W4282912952 hasConcept C121332964 @default.
- W4282912952 hasConcept C126255220 @default.
- W4282912952 hasConcept C134306372 @default.
- W4282912952 hasConcept C154945302 @default.
- W4282912952 hasConcept C155512373 @default.
- W4282912952 hasConcept C158622935 @default.
- W4282912952 hasConcept C165464430 @default.
- W4282912952 hasConcept C202426404 @default.
- W4282912952 hasConcept C2524010 @default.
- W4282912952 hasConcept C28826006 @default.
- W4282912952 hasConcept C33923547 @default.
- W4282912952 hasConcept C41008148 @default.
- W4282912952 hasConcept C50644808 @default.
- W4282912952 hasConcept C57493831 @default.
- W4282912952 hasConcept C5917680 @default.
- W4282912952 hasConcept C62520636 @default.
- W4282912952 hasConcept C93779851 @default.
- W4282912952 hasConceptScore W4282912952C111335779 @default.
- W4282912952 hasConceptScore W4282912952C11413529 @default.
- W4282912952 hasConceptScore W4282912952C121332964 @default.
- W4282912952 hasConceptScore W4282912952C126255220 @default.
- W4282912952 hasConceptScore W4282912952C134306372 @default.
- W4282912952 hasConceptScore W4282912952C154945302 @default.
- W4282912952 hasConceptScore W4282912952C155512373 @default.
- W4282912952 hasConceptScore W4282912952C158622935 @default.
- W4282912952 hasConceptScore W4282912952C165464430 @default.
- W4282912952 hasConceptScore W4282912952C202426404 @default.
- W4282912952 hasConceptScore W4282912952C2524010 @default.
- W4282912952 hasConceptScore W4282912952C28826006 @default.
- W4282912952 hasConceptScore W4282912952C33923547 @default.
- W4282912952 hasConceptScore W4282912952C41008148 @default.
- W4282912952 hasConceptScore W4282912952C50644808 @default.
- W4282912952 hasConceptScore W4282912952C57493831 @default.
- W4282912952 hasConceptScore W4282912952C5917680 @default.
- W4282912952 hasConceptScore W4282912952C62520636 @default.
- W4282912952 hasConceptScore W4282912952C93779851 @default.
- W4282912952 hasLocation W42829129521 @default.
- W4282912952 hasOpenAccess W4282912952 @default.
- W4282912952 hasPrimaryLocation W42829129521 @default.
- W4282912952 hasRelatedWork W1973447931 @default.
- W4282912952 hasRelatedWork W2017999133 @default.
- W4282912952 hasRelatedWork W2117919791 @default.
- W4282912952 hasRelatedWork W2135944183 @default.
- W4282912952 hasRelatedWork W2376945355 @default.
- W4282912952 hasRelatedWork W2510190685 @default.
- W4282912952 hasRelatedWork W3157030640 @default.
- W4282912952 hasRelatedWork W3197687431 @default.
- W4282912952 hasRelatedWork W4287185480 @default.
- W4282912952 hasRelatedWork W4367694297 @default.
- W4282912952 hasVolume "119" @default.
- W4282912952 isParatext "false" @default.
- W4282912952 isRetracted "false" @default.
- W4282912952 workType "article" @default.