Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282913052> ?p ?o ?g. }
- W4282913052 endingPage "3394" @default.
- W4282913052 startingPage "3385" @default.
- W4282913052 abstract "Our ability to identify causative genetic factors for mouse genetic models of human diseases and biomedical traits has been limited by the difficulties associated with identifying true causative factors, which are often obscured by the many false positive genetic associations produced by a GWAS.To accelerate the pace of genetic discovery, we developed a graph neural network (GNN)-based automated pipeline (GNNHap) that could rapidly analyze mouse genetic model data and identify high probability causal genetic factors for analyzed traits. After assessing the strength of allelic associations with the strain response pattern; this pipeline analyzes 29M published papers to assess candidate gene-phenotype relationships; and incorporates the information obtained from a protein-protein interaction network and protein sequence features into the analysis. The GNN model produces markedly improved results relative to that of a simple linear neural network. We demonstrate that GNNHap can identify novel causative genetic factors for murine models of diabetes/obesity and for cataract formation, which were validated by the phenotypes appearing in previously analyzed gene knockout mice. The diabetes/obesity results indicate how characterization of the underlying genetic architecture enables new therapies to be discovered and tested by applying 'precision medicine' principles to murine models.The GNNHap source code is freely available at https://github.com/zqfang/gnnhap, and the new version of the HBCGM program is available at https://github.com/zqfang/haplomap.Supplementary data are available at Bioinformatics online." @default.
- W4282913052 created "2022-06-16" @default.
- W4282913052 creator A5016419819 @default.
- W4282913052 creator A5045717560 @default.
- W4282913052 date "2022-05-24" @default.
- W4282913052 modified "2023-09-26" @default.
- W4282913052 title "An automated multi-modal graph-based pipeline for mouse genetic discovery" @default.
- W4282913052 cites W1917519329 @default.
- W4282913052 cites W1964653347 @default.
- W4282913052 cites W1975302052 @default.
- W4282913052 cites W1985272560 @default.
- W4282913052 cites W1988486848 @default.
- W4282913052 cites W1988634590 @default.
- W4282913052 cites W1991189546 @default.
- W4282913052 cites W1993384327 @default.
- W4282913052 cites W2002556513 @default.
- W4282913052 cites W2009330034 @default.
- W4282913052 cites W2033151532 @default.
- W4282913052 cites W2041093448 @default.
- W4282913052 cites W2041136224 @default.
- W4282913052 cites W2041731718 @default.
- W4282913052 cites W2043723116 @default.
- W4282913052 cites W2044050933 @default.
- W4282913052 cites W2071797996 @default.
- W4282913052 cites W2078524200 @default.
- W4282913052 cites W2086794706 @default.
- W4282913052 cites W2093800333 @default.
- W4282913052 cites W2096525273 @default.
- W4282913052 cites W2100013324 @default.
- W4282913052 cites W2101062898 @default.
- W4282913052 cites W2103738634 @default.
- W4282913052 cites W2104910525 @default.
- W4282913052 cites W2107811029 @default.
- W4282913052 cites W2119279196 @default.
- W4282913052 cites W2134838671 @default.
- W4282913052 cites W2139969213 @default.
- W4282913052 cites W2155055267 @default.
- W4282913052 cites W2161633633 @default.
- W4282913052 cites W2163082292 @default.
- W4282913052 cites W2171135911 @default.
- W4282913052 cites W2300791493 @default.
- W4282913052 cites W2336431486 @default.
- W4282913052 cites W2484239316 @default.
- W4282913052 cites W2512573865 @default.
- W4282913052 cites W2535426958 @default.
- W4282913052 cites W2551131534 @default.
- W4282913052 cites W2554019130 @default.
- W4282913052 cites W2588431354 @default.
- W4282913052 cites W2589937067 @default.
- W4282913052 cites W2595097874 @default.
- W4282913052 cites W2751686252 @default.
- W4282913052 cites W2760742318 @default.
- W4282913052 cites W2762321532 @default.
- W4282913052 cites W2770299445 @default.
- W4282913052 cites W2786016794 @default.
- W4282913052 cites W2801470635 @default.
- W4282913052 cites W2919749708 @default.
- W4282913052 cites W2945257483 @default.
- W4282913052 cites W2948558658 @default.
- W4282913052 cites W2951364430 @default.
- W4282913052 cites W2955231772 @default.
- W4282913052 cites W2970910367 @default.
- W4282913052 cites W2975979350 @default.
- W4282913052 cites W2980789587 @default.
- W4282913052 cites W3002946530 @default.
- W4282913052 cites W3007815550 @default.
- W4282913052 cites W3033896008 @default.
- W4282913052 cites W3042221936 @default.
- W4282913052 cites W3137067885 @default.
- W4282913052 cites W3138225633 @default.
- W4282913052 cites W3159925822 @default.
- W4282913052 cites W3188579603 @default.
- W4282913052 cites W3193447048 @default.
- W4282913052 cites W3199164850 @default.
- W4282913052 cites W3200707343 @default.
- W4282913052 cites W3205076722 @default.
- W4282913052 cites W3208470314 @default.
- W4282913052 cites W3212346081 @default.
- W4282913052 cites W4210706440 @default.
- W4282913052 cites W4210755447 @default.
- W4282913052 cites W4220680585 @default.
- W4282913052 cites W4247001379 @default.
- W4282913052 cites W63008016 @default.
- W4282913052 doi "https://doi.org/10.1093/bioinformatics/btac356" @default.
- W4282913052 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35608290" @default.
- W4282913052 hasPublicationYear "2022" @default.
- W4282913052 type Work @default.
- W4282913052 citedByCount "1" @default.
- W4282913052 countsByYear W42829130522022 @default.
- W4282913052 crossrefType "journal-article" @default.
- W4282913052 hasAuthorship W4282913052A5016419819 @default.
- W4282913052 hasAuthorship W4282913052A5045717560 @default.
- W4282913052 hasBestOaLocation W42829130521 @default.
- W4282913052 hasConcept C104317684 @default.
- W4282913052 hasConcept C119857082 @default.
- W4282913052 hasConcept C124101348 @default.
- W4282913052 hasConcept C127716648 @default.
- W4282913052 hasConcept C199360897 @default.