Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282914967> ?p ?o ?g. }
- W4282914967 endingPage "106909" @default.
- W4282914967 startingPage "106909" @default.
- W4282914967 abstract "Background and objective: Auscultation is the first technique applied to the early diagnose of any cardiovascular disease (CVD) in rural areas and poor-resources countries because of its low cost and non-invasiveness. However, it highly depends on the physician’s expertise to recognize specific heart sounds heard through the stethoscope. The analysis of phonocardiogram (PCG) signals attempts to segment each cardiac cycle into the four cardiac states (S1, systole, S2 and diastole) in order to develop automatic systems applied to an efficient and reliable detection and classification of heartbeats. In this work, we propose an unsupervised approach, based on time-frequency characteristics shown by cardiac sounds, to detect and classify heartbeats S1 and S2. Methods: The proposed system consists of a two-stage cascade. The first stage performs a rough heartbeat detection while the second stage refines the previous one, improving the temporal localization and also classifying the heartbeats into types S1 and S2. The first contribution is a novel approach that combines the dissimilarity matrix with the frame-level spectral divergence to locate heartbeats using the repetitiveness shown by the heart sounds and the temporal relationships between the intervals defined by the events S1/S2 and non-S1/S2 (systole and diastole). The second contribution is a verification-correction-classification process based on a sliding window that allows the preservation of the temporal structure of the cardiac cycle in order to be applied in the heart sound classification. The proposed method has been assessed using the open access databases PASCAL, CirCor DigiScope Phonocardiogram and an additional sound mixing procedure considering both Additive White Gaussian Noise (AWGN) and different kinds of clinical ambient noises from a commercial database. Results: The proposed method outperforms the detection and classification performance of other recent state-of-the-art methods. Although our proposal achieves the best average accuracy for PCG signals without cardiac abnormalities, 99.4% in heartbeat detection and 97.2% in heartbeat classification, its worst average accuracy is always above 92% for PCG signals with cardiac abnormalities, signifying an improvement in heartbeat detection/classification above 10% compared to the other state-of-the-art methods evaluated. Conclusions: The proposed method provides the best detection/classification performance in realistic scenarios where the presence of cardiac anomalies as well as different types of clinical environmental noises are active in the PCG signal. Of note, the promising modelling of the temporal structures of the heart provided by the dissimilarity matrix together with the frame-level spectral divergence, as well as the removal of a significant number of spurious heart events and recovery of missing heart events, both corrected by the proposed verification-correction-classification algorithm, suggest that our proposal is a successful tool to be applied in heart segmentation." @default.
- W4282914967 created "2022-06-16" @default.
- W4282914967 creator A5012024200 @default.
- W4282914967 creator A5024808450 @default.
- W4282914967 creator A5032175902 @default.
- W4282914967 creator A5067862103 @default.
- W4282914967 creator A5082761607 @default.
- W4282914967 creator A5085068892 @default.
- W4282914967 date "2022-06-01" @default.
- W4282914967 modified "2023-09-26" @default.
- W4282914967 title "Unsupervised detection and classification of heartbeats using the dissimilarity matrix in PCG signals" @default.
- W4282914967 cites W1966425029 @default.
- W4282914967 cites W1980860850 @default.
- W4282914967 cites W1983023096 @default.
- W4282914967 cites W2003800560 @default.
- W4282914967 cites W2012919451 @default.
- W4282914967 cites W2019092077 @default.
- W4282914967 cites W2022668263 @default.
- W4282914967 cites W2029677531 @default.
- W4282914967 cites W2039031643 @default.
- W4282914967 cites W2091904085 @default.
- W4282914967 cites W2093376526 @default.
- W4282914967 cites W2106631236 @default.
- W4282914967 cites W2137837503 @default.
- W4282914967 cites W2143755314 @default.
- W4282914967 cites W2146837818 @default.
- W4282914967 cites W2162451429 @default.
- W4282914967 cites W2162627165 @default.
- W4282914967 cites W2169698188 @default.
- W4282914967 cites W2254650097 @default.
- W4282914967 cites W2335340103 @default.
- W4282914967 cites W2342504937 @default.
- W4282914967 cites W2606505363 @default.
- W4282914967 cites W2607377556 @default.
- W4282914967 cites W2805571860 @default.
- W4282914967 cites W2883178266 @default.
- W4282914967 cites W2891328462 @default.
- W4282914967 cites W2907728853 @default.
- W4282914967 cites W2911420178 @default.
- W4282914967 cites W2936007697 @default.
- W4282914967 cites W2945569869 @default.
- W4282914967 cites W2989757640 @default.
- W4282914967 cites W3011492655 @default.
- W4282914967 cites W3022413454 @default.
- W4282914967 cites W3035159033 @default.
- W4282914967 cites W3084881902 @default.
- W4282914967 cites W3087468906 @default.
- W4282914967 cites W3122189984 @default.
- W4282914967 cites W3165504692 @default.
- W4282914967 cites W3208569356 @default.
- W4282914967 doi "https://doi.org/10.1016/j.cmpb.2022.106909" @default.
- W4282914967 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35649297" @default.
- W4282914967 hasPublicationYear "2022" @default.
- W4282914967 type Work @default.
- W4282914967 citedByCount "3" @default.
- W4282914967 countsByYear W42829149672023 @default.
- W4282914967 crossrefType "journal-article" @default.
- W4282914967 hasAuthorship W4282914967A5012024200 @default.
- W4282914967 hasAuthorship W4282914967A5024808450 @default.
- W4282914967 hasAuthorship W4282914967A5032175902 @default.
- W4282914967 hasAuthorship W4282914967A5067862103 @default.
- W4282914967 hasAuthorship W4282914967A5082761607 @default.
- W4282914967 hasAuthorship W4282914967A5085068892 @default.
- W4282914967 hasConcept C126322002 @default.
- W4282914967 hasConcept C126838900 @default.
- W4282914967 hasConcept C13852961 @default.
- W4282914967 hasConcept C153180895 @default.
- W4282914967 hasConcept C154945302 @default.
- W4282914967 hasConcept C159693508 @default.
- W4282914967 hasConcept C2779055095 @default.
- W4282914967 hasConcept C2779435589 @default.
- W4282914967 hasConcept C28490314 @default.
- W4282914967 hasConcept C38652104 @default.
- W4282914967 hasConcept C41008148 @default.
- W4282914967 hasConcept C71924100 @default.
- W4282914967 hasConcept C99398487 @default.
- W4282914967 hasConceptScore W4282914967C126322002 @default.
- W4282914967 hasConceptScore W4282914967C126838900 @default.
- W4282914967 hasConceptScore W4282914967C13852961 @default.
- W4282914967 hasConceptScore W4282914967C153180895 @default.
- W4282914967 hasConceptScore W4282914967C154945302 @default.
- W4282914967 hasConceptScore W4282914967C159693508 @default.
- W4282914967 hasConceptScore W4282914967C2779055095 @default.
- W4282914967 hasConceptScore W4282914967C2779435589 @default.
- W4282914967 hasConceptScore W4282914967C28490314 @default.
- W4282914967 hasConceptScore W4282914967C38652104 @default.
- W4282914967 hasConceptScore W4282914967C41008148 @default.
- W4282914967 hasConceptScore W4282914967C71924100 @default.
- W4282914967 hasConceptScore W4282914967C99398487 @default.
- W4282914967 hasFunder F4320322930 @default.
- W4282914967 hasFunder F4320324132 @default.
- W4282914967 hasLocation W42829149671 @default.
- W4282914967 hasLocation W42829149672 @default.
- W4282914967 hasOpenAccess W4282914967 @default.
- W4282914967 hasPrimaryLocation W42829149671 @default.
- W4282914967 hasRelatedWork W2066804906 @default.
- W4282914967 hasRelatedWork W2083400547 @default.
- W4282914967 hasRelatedWork W2649036450 @default.