Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282922189> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4282922189 abstract "Neural network based data-driven operator learning schemes have shown tremendous potential in computational mechanics. DeepONet is one such neural network architecture which has gained widespread appreciation owing to its excellent prediction capabilities. Having said that, being set in a deterministic framework exposes DeepONet architecture to the risk of overfitting, poor generalization and in its unaltered form, it is incapable of quantifying the uncertainties associated with its predictions. We propose in this paper, a Variational Bayes DeepONet (VB-DeepONet) for operator learning, which can alleviate these limitations of DeepONet architecture to a great extent and give user additional information regarding the associated uncertainty at the prediction stage. The key idea behind neural networks set in Bayesian framework is that, the weights and bias of the neural network are treated as probability distributions instead of point estimates and, Bayesian inference is used to update their prior distribution. Now, to manage the computational cost associated with approximating the posterior distribution, the proposed VB-DeepONet uses textit{variational inference}. Unlike Markov Chain Monte Carlo schemes, variational inference has the capacity to take into account high dimensional posterior distributions while keeping the associated computational cost low. Different examples covering mechanics problems like diffusion reaction, gravity pendulum, advection diffusion have been shown to illustrate the performance of the proposed VB-DeepONet and comparisons have also been drawn against DeepONet set in deterministic framework." @default.
- W4282922189 created "2022-06-16" @default.
- W4282922189 creator A5030664714 @default.
- W4282922189 creator A5088570423 @default.
- W4282922189 date "2022-06-12" @default.
- W4282922189 modified "2023-09-25" @default.
- W4282922189 title "Variational Bayes Deep Operator Network: A data-driven Bayesian solver for parametric differential equations" @default.
- W4282922189 doi "https://doi.org/10.48550/arxiv.2206.05655" @default.
- W4282922189 hasPublicationYear "2022" @default.
- W4282922189 type Work @default.
- W4282922189 citedByCount "0" @default.
- W4282922189 crossrefType "posted-content" @default.
- W4282922189 hasAuthorship W4282922189A5030664714 @default.
- W4282922189 hasAuthorship W4282922189A5088570423 @default.
- W4282922189 hasBestOaLocation W42829221891 @default.
- W4282922189 hasConcept C104317684 @default.
- W4282922189 hasConcept C107673813 @default.
- W4282922189 hasConcept C11413529 @default.
- W4282922189 hasConcept C119857082 @default.
- W4282922189 hasConcept C126255220 @default.
- W4282922189 hasConcept C154945302 @default.
- W4282922189 hasConcept C158448853 @default.
- W4282922189 hasConcept C17020691 @default.
- W4282922189 hasConcept C185592680 @default.
- W4282922189 hasConcept C199360897 @default.
- W4282922189 hasConcept C207201462 @default.
- W4282922189 hasConcept C22019652 @default.
- W4282922189 hasConcept C2776214188 @default.
- W4282922189 hasConcept C2778770139 @default.
- W4282922189 hasConcept C33923547 @default.
- W4282922189 hasConcept C41008148 @default.
- W4282922189 hasConcept C50644808 @default.
- W4282922189 hasConcept C55493867 @default.
- W4282922189 hasConcept C57830394 @default.
- W4282922189 hasConcept C86339819 @default.
- W4282922189 hasConceptScore W4282922189C104317684 @default.
- W4282922189 hasConceptScore W4282922189C107673813 @default.
- W4282922189 hasConceptScore W4282922189C11413529 @default.
- W4282922189 hasConceptScore W4282922189C119857082 @default.
- W4282922189 hasConceptScore W4282922189C126255220 @default.
- W4282922189 hasConceptScore W4282922189C154945302 @default.
- W4282922189 hasConceptScore W4282922189C158448853 @default.
- W4282922189 hasConceptScore W4282922189C17020691 @default.
- W4282922189 hasConceptScore W4282922189C185592680 @default.
- W4282922189 hasConceptScore W4282922189C199360897 @default.
- W4282922189 hasConceptScore W4282922189C207201462 @default.
- W4282922189 hasConceptScore W4282922189C22019652 @default.
- W4282922189 hasConceptScore W4282922189C2776214188 @default.
- W4282922189 hasConceptScore W4282922189C2778770139 @default.
- W4282922189 hasConceptScore W4282922189C33923547 @default.
- W4282922189 hasConceptScore W4282922189C41008148 @default.
- W4282922189 hasConceptScore W4282922189C50644808 @default.
- W4282922189 hasConceptScore W4282922189C55493867 @default.
- W4282922189 hasConceptScore W4282922189C57830394 @default.
- W4282922189 hasConceptScore W4282922189C86339819 @default.
- W4282922189 hasLocation W42829221891 @default.
- W4282922189 hasLocation W42829221892 @default.
- W4282922189 hasOpenAccess W4282922189 @default.
- W4282922189 hasPrimaryLocation W42829221891 @default.
- W4282922189 hasRelatedWork W1996541855 @default.
- W4282922189 hasRelatedWork W2753840555 @default.
- W4282922189 hasRelatedWork W2795435272 @default.
- W4282922189 hasRelatedWork W2940336242 @default.
- W4282922189 hasRelatedWork W2951851447 @default.
- W4282922189 hasRelatedWork W2989932438 @default.
- W4282922189 hasRelatedWork W3099765033 @default.
- W4282922189 hasRelatedWork W310515683 @default.
- W4282922189 hasRelatedWork W4210794429 @default.
- W4282922189 hasRelatedWork W4283732135 @default.
- W4282922189 isParatext "false" @default.
- W4282922189 isRetracted "false" @default.
- W4282922189 workType "article" @default.