Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282922598> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4282922598 endingPage "1038" @default.
- W4282922598 startingPage "1025" @default.
- W4282922598 abstract "Cervical cancer is a disease that develops in the cervix’s tissue. Cervical cancer mortality is being reduced due to the growth of screening programmers. Cervical cancer screening is a big issue because the majority of cervical cancer screening treatments are invasive. Hence, there is apprehension about standard screening procedures, as well as the time it takes to learn the results. There are different methods for detecting problems in the cervix using Pap (Papanicolaou-stained) test, colposcopy, Computed Tomography (CT), Magnetic Resonance Image (MRI) and ultrasound. To obtain a clear sketch of the infected regions, using a decision tree approach, the captured image has to be segmented and analyzed. The goal of creating a decision tree is to establish prediction model that anticipate the feature vector based on the input variable. This paper deals with investigating various techniques of segmentation for detecting the cervical cancer. It proposes a novel method to develop an assistance system for the detection diagnosis of cervical cancer, based on work of Martin, Byriel and Norup. The analysis is focused on Pap smear pictures of single cells. Smear testing is a method of detecting abnormalities in the blood. Image processing is an effective method for extracting data. It is used to determine the size of cervical carcinoma and the length of the uterus. Martin’s database, which is open source and utilised for analysis and validation, is obtainable for research purposes. Cervical malignancy information utilizing three grouping strategies to anticipate the disease and afterward analyzed the outcomes showed that choice tree is the best classifier indicator with the test dataset. Further investigations ought to be led to improve execution." @default.
- W4282922598 created "2022-06-16" @default.
- W4282922598 creator A5021833821 @default.
- W4282922598 creator A5065188478 @default.
- W4282922598 date "2023-01-01" @default.
- W4282922598 modified "2023-09-25" @default.
- W4282922598 title "Cervical Cancer Detection Based on Novel Decision Tree Approach" @default.
- W4282922598 cites W1829380873 @default.
- W4282922598 cites W2057836452 @default.
- W4282922598 cites W2756291343 @default.
- W4282922598 cites W2766152454 @default.
- W4282922598 cites W2911270920 @default.
- W4282922598 cites W2912814196 @default.
- W4282922598 cites W2917953120 @default.
- W4282922598 cites W2969368242 @default.
- W4282922598 cites W2969822717 @default.
- W4282922598 cites W3178435079 @default.
- W4282922598 doi "https://doi.org/10.32604/csse.2023.022564" @default.
- W4282922598 hasPublicationYear "2023" @default.
- W4282922598 type Work @default.
- W4282922598 citedByCount "0" @default.
- W4282922598 crossrefType "journal-article" @default.
- W4282922598 hasAuthorship W4282922598A5021833821 @default.
- W4282922598 hasAuthorship W4282922598A5065188478 @default.
- W4282922598 hasBestOaLocation W42829225981 @default.
- W4282922598 hasConcept C113174947 @default.
- W4282922598 hasConcept C121608353 @default.
- W4282922598 hasConcept C126322002 @default.
- W4282922598 hasConcept C126838900 @default.
- W4282922598 hasConcept C134306372 @default.
- W4282922598 hasConcept C154945302 @default.
- W4282922598 hasConcept C2776117191 @default.
- W4282922598 hasConcept C2777740455 @default.
- W4282922598 hasConcept C2778220009 @default.
- W4282922598 hasConcept C33923547 @default.
- W4282922598 hasConcept C41008148 @default.
- W4282922598 hasConcept C65051434 @default.
- W4282922598 hasConcept C71924100 @default.
- W4282922598 hasConcept C84525736 @default.
- W4282922598 hasConcept C89600930 @default.
- W4282922598 hasConceptScore W4282922598C113174947 @default.
- W4282922598 hasConceptScore W4282922598C121608353 @default.
- W4282922598 hasConceptScore W4282922598C126322002 @default.
- W4282922598 hasConceptScore W4282922598C126838900 @default.
- W4282922598 hasConceptScore W4282922598C134306372 @default.
- W4282922598 hasConceptScore W4282922598C154945302 @default.
- W4282922598 hasConceptScore W4282922598C2776117191 @default.
- W4282922598 hasConceptScore W4282922598C2777740455 @default.
- W4282922598 hasConceptScore W4282922598C2778220009 @default.
- W4282922598 hasConceptScore W4282922598C33923547 @default.
- W4282922598 hasConceptScore W4282922598C41008148 @default.
- W4282922598 hasConceptScore W4282922598C65051434 @default.
- W4282922598 hasConceptScore W4282922598C71924100 @default.
- W4282922598 hasConceptScore W4282922598C84525736 @default.
- W4282922598 hasConceptScore W4282922598C89600930 @default.
- W4282922598 hasIssue "2" @default.
- W4282922598 hasLocation W42829225981 @default.
- W4282922598 hasOpenAccess W4282922598 @default.
- W4282922598 hasPrimaryLocation W42829225981 @default.
- W4282922598 hasRelatedWork W113135054 @default.
- W4282922598 hasRelatedWork W2025105594 @default.
- W4282922598 hasRelatedWork W2152715173 @default.
- W4282922598 hasRelatedWork W2184317297 @default.
- W4282922598 hasRelatedWork W2514884906 @default.
- W4282922598 hasRelatedWork W2888045684 @default.
- W4282922598 hasRelatedWork W3011191626 @default.
- W4282922598 hasRelatedWork W3213770797 @default.
- W4282922598 hasRelatedWork W4292879084 @default.
- W4282922598 hasRelatedWork W2186662502 @default.
- W4282922598 hasVolume "44" @default.
- W4282922598 isParatext "false" @default.
- W4282922598 isRetracted "false" @default.
- W4282922598 workType "article" @default.