Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282932849> ?p ?o ?g. }
- W4282932849 endingPage "156348" @default.
- W4282932849 startingPage "156348" @default.
- W4282932849 abstract "Urbanization witnessed unprecedented development globally, which causes citizens and urban temperature to become increasingly intertwined. Although researchers were interested in the field, most studies focused on holistic linear links between the characteristics of the urban built-up environment and temperature. The study used Bayesian optimization ensemble learning and Shapley value to decouple the urban thermal environment by Landsat satellite data. This work's novelties reveal the specific driving effect of different value ranges of urban features in the overall process on the urban thermal environment and advancing an optimum observation buffer zone of the urban surface temperature. The study's results were only for daytime and Beijing scope. The following are the main findings: (1) The 2 km observation buffer zone is best to analyze the urban thermal environment for this dataset. (2) The ecological environment factors have a more significant effect on the urban temperature than the urban morphology factors. (3) In summer, when the vegetation coverage exceeds 58.1%, every 10% increase could reduce the temperature by 0.84 °C. In contrast to summer, when vegetation coverage exceeds 64.7% and 73.2%, respectively, in spring and fall, there will be a significant marginal utility. (4) The effect of the building height has seasonal variations. It has the greatest cooling effect in the spring when the height is between 18 m and 75 m, and the daytime surface temperature at the time of Landsat overpass will drop by 1.25 °C. These findings will aid in understanding how building construction influences urban surface temperature and provide statistical support for planners." @default.
- W4282932849 created "2022-06-16" @default.
- W4282932849 creator A5012647147 @default.
- W4282932849 creator A5013753811 @default.
- W4282932849 creator A5014582087 @default.
- W4282932849 creator A5033469325 @default.
- W4282932849 creator A5040909099 @default.
- W4282932849 creator A5049944806 @default.
- W4282932849 creator A5060374227 @default.
- W4282932849 creator A5067316927 @default.
- W4282932849 creator A5071048224 @default.
- W4282932849 creator A5074696141 @default.
- W4282932849 date "2022-09-01" @default.
- W4282932849 modified "2023-10-10" @default.
- W4282932849 title "Nonlinear forces in urban thermal environment using Bayesian optimization-based ensemble learning" @default.
- W4282932849 cites W1973749534 @default.
- W4282932849 cites W1978481320 @default.
- W4282932849 cites W1991776813 @default.
- W4282932849 cites W2030737358 @default.
- W4282932849 cites W2050669233 @default.
- W4282932849 cites W2057345917 @default.
- W4282932849 cites W2061434834 @default.
- W4282932849 cites W2069175094 @default.
- W4282932849 cites W2070120612 @default.
- W4282932849 cites W2089944219 @default.
- W4282932849 cites W2108017618 @default.
- W4282932849 cites W2149283938 @default.
- W4282932849 cites W2162775913 @default.
- W4282932849 cites W2277106464 @default.
- W4282932849 cites W2601995073 @default.
- W4282932849 cites W2606057709 @default.
- W4282932849 cites W2729574696 @default.
- W4282932849 cites W2803234898 @default.
- W4282932849 cites W2805798665 @default.
- W4282932849 cites W2892474015 @default.
- W4282932849 cites W2897084700 @default.
- W4282932849 cites W2917074926 @default.
- W4282932849 cites W2936719891 @default.
- W4282932849 cites W2937445681 @default.
- W4282932849 cites W2941529264 @default.
- W4282932849 cites W2944563459 @default.
- W4282932849 cites W2945995969 @default.
- W4282932849 cites W2956653159 @default.
- W4282932849 cites W2971557072 @default.
- W4282932849 cites W2979673065 @default.
- W4282932849 cites W2987776979 @default.
- W4282932849 cites W3025055317 @default.
- W4282932849 cites W3029885148 @default.
- W4282932849 cites W3107612891 @default.
- W4282932849 cites W3121522131 @default.
- W4282932849 cites W3132554112 @default.
- W4282932849 cites W3157510680 @default.
- W4282932849 cites W3169559612 @default.
- W4282932849 cites W3178235138 @default.
- W4282932849 cites W3192985810 @default.
- W4282932849 cites W3209566959 @default.
- W4282932849 cites W3210631957 @default.
- W4282932849 doi "https://doi.org/10.1016/j.scitotenv.2022.156348" @default.
- W4282932849 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35662603" @default.
- W4282932849 hasPublicationYear "2022" @default.
- W4282932849 type Work @default.
- W4282932849 citedByCount "10" @default.
- W4282932849 countsByYear W42829328492022 @default.
- W4282932849 countsByYear W42829328492023 @default.
- W4282932849 crossrefType "journal-article" @default.
- W4282932849 hasAuthorship W4282932849A5012647147 @default.
- W4282932849 hasAuthorship W4282932849A5013753811 @default.
- W4282932849 hasAuthorship W4282932849A5014582087 @default.
- W4282932849 hasAuthorship W4282932849A5033469325 @default.
- W4282932849 hasAuthorship W4282932849A5040909099 @default.
- W4282932849 hasAuthorship W4282932849A5049944806 @default.
- W4282932849 hasAuthorship W4282932849A5060374227 @default.
- W4282932849 hasAuthorship W4282932849A5067316927 @default.
- W4282932849 hasAuthorship W4282932849A5071048224 @default.
- W4282932849 hasAuthorship W4282932849A5074696141 @default.
- W4282932849 hasConcept C100970517 @default.
- W4282932849 hasConcept C127413603 @default.
- W4282932849 hasConcept C142724271 @default.
- W4282932849 hasConcept C147176958 @default.
- W4282932849 hasConcept C153294291 @default.
- W4282932849 hasConcept C166957645 @default.
- W4282932849 hasConcept C18903297 @default.
- W4282932849 hasConcept C191935318 @default.
- W4282932849 hasConcept C205649164 @default.
- W4282932849 hasConcept C2776133958 @default.
- W4282932849 hasConcept C2778304055 @default.
- W4282932849 hasConcept C39432304 @default.
- W4282932849 hasConcept C39853841 @default.
- W4282932849 hasConcept C49545453 @default.
- W4282932849 hasConcept C54005896 @default.
- W4282932849 hasConcept C71924100 @default.
- W4282932849 hasConcept C86803240 @default.
- W4282932849 hasConceptScore W4282932849C100970517 @default.
- W4282932849 hasConceptScore W4282932849C127413603 @default.
- W4282932849 hasConceptScore W4282932849C142724271 @default.
- W4282932849 hasConceptScore W4282932849C147176958 @default.
- W4282932849 hasConceptScore W4282932849C153294291 @default.
- W4282932849 hasConceptScore W4282932849C166957645 @default.