Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282941640> ?p ?o ?g. }
- W4282941640 endingPage "207" @default.
- W4282941640 startingPage "207" @default.
- W4282941640 abstract "Facial Beauty Prediction (FBP) is an important visual recognition problem to evaluate the attractiveness of faces according to human perception. Most existing FBP methods are based on supervised solutions using geometric or deep features. Semi-supervised learning for FBP is an almost unexplored research area. In this work, we propose a graph-based semi-supervised method in which multiple graphs are constructed to find the appropriate graph representation of the face images (with and without scores). The proposed method combines both geometric and deep feature-based graphs to produce a high-level representation of face images instead of using a single face descriptor and also improves the discriminative ability of graph-based score propagation methods. In addition to the data graph, our proposed approach fuses an additional graph adaptively built on the predicted beauty values. Experimental results on the SCUTFBP-5500 facial beauty dataset demonstrate the superiority of the proposed algorithm compared to other state-of-the-art methods." @default.
- W4282941640 created "2022-06-16" @default.
- W4282941640 creator A5069092734 @default.
- W4282941640 creator A5081042741 @default.
- W4282941640 date "2022-06-14" @default.
- W4282941640 modified "2023-09-30" @default.
- W4282941640 title "Multi-View Graph Fusion for Semi-Supervised Learning: Application to Image-Based Face Beauty Prediction" @default.
- W4282941640 cites W1965870148 @default.
- W4282941640 cites W1972968514 @default.
- W4282941640 cites W1976303724 @default.
- W4282941640 cites W1992535061 @default.
- W4282941640 cites W1993741516 @default.
- W4282941640 cites W2003118627 @default.
- W4282941640 cites W2007477772 @default.
- W4282941640 cites W2072596762 @default.
- W4282941640 cites W2081648593 @default.
- W4282941640 cites W2088165831 @default.
- W4282941640 cites W2093212601 @default.
- W4282941640 cites W2109961374 @default.
- W4282941640 cites W2111300637 @default.
- W4282941640 cites W2113590298 @default.
- W4282941640 cites W2115665159 @default.
- W4282941640 cites W2117893211 @default.
- W4282941640 cites W2127651456 @default.
- W4282941640 cites W2131829795 @default.
- W4282941640 cites W2151541811 @default.
- W4282941640 cites W2157395013 @default.
- W4282941640 cites W2166338096 @default.
- W4282941640 cites W2168884969 @default.
- W4282941640 cites W2194775991 @default.
- W4282941640 cites W2206609956 @default.
- W4282941640 cites W2214698518 @default.
- W4282941640 cites W2219118172 @default.
- W4282941640 cites W2231999017 @default.
- W4282941640 cites W2580246066 @default.
- W4282941640 cites W2587293726 @default.
- W4282941640 cites W2594524198 @default.
- W4282941640 cites W2620075774 @default.
- W4282941640 cites W2737167549 @default.
- W4282941640 cites W2896936273 @default.
- W4282941640 cites W2906358223 @default.
- W4282941640 cites W2918467831 @default.
- W4282941640 cites W2962769166 @default.
- W4282941640 cites W2962863251 @default.
- W4282941640 cites W2964118336 @default.
- W4282941640 cites W2965944357 @default.
- W4282941640 cites W2971918775 @default.
- W4282941640 cites W2978045841 @default.
- W4282941640 cites W3022655122 @default.
- W4282941640 cites W3032615863 @default.
- W4282941640 cites W3048043446 @default.
- W4282941640 cites W3153420749 @default.
- W4282941640 cites W3186784100 @default.
- W4282941640 cites W3211757366 @default.
- W4282941640 cites W4210924160 @default.
- W4282941640 cites W4361807594 @default.
- W4282941640 doi "https://doi.org/10.3390/a15060207" @default.
- W4282941640 hasPublicationYear "2022" @default.
- W4282941640 type Work @default.
- W4282941640 citedByCount "1" @default.
- W4282941640 countsByYear W42829416402022 @default.
- W4282941640 crossrefType "journal-article" @default.
- W4282941640 hasAuthorship W4282941640A5069092734 @default.
- W4282941640 hasAuthorship W4282941640A5081042741 @default.
- W4282941640 hasBestOaLocation W42829416401 @default.
- W4282941640 hasConcept C119857082 @default.
- W4282941640 hasConcept C132525143 @default.
- W4282941640 hasConcept C144024400 @default.
- W4282941640 hasConcept C153180895 @default.
- W4282941640 hasConcept C154945302 @default.
- W4282941640 hasConcept C2779304628 @default.
- W4282941640 hasConcept C36289849 @default.
- W4282941640 hasConcept C41008148 @default.
- W4282941640 hasConcept C80444323 @default.
- W4282941640 hasConcept C97931131 @default.
- W4282941640 hasConceptScore W4282941640C119857082 @default.
- W4282941640 hasConceptScore W4282941640C132525143 @default.
- W4282941640 hasConceptScore W4282941640C144024400 @default.
- W4282941640 hasConceptScore W4282941640C153180895 @default.
- W4282941640 hasConceptScore W4282941640C154945302 @default.
- W4282941640 hasConceptScore W4282941640C2779304628 @default.
- W4282941640 hasConceptScore W4282941640C36289849 @default.
- W4282941640 hasConceptScore W4282941640C41008148 @default.
- W4282941640 hasConceptScore W4282941640C80444323 @default.
- W4282941640 hasConceptScore W4282941640C97931131 @default.
- W4282941640 hasIssue "6" @default.
- W4282941640 hasLocation W42829416401 @default.
- W4282941640 hasLocation W42829416402 @default.
- W4282941640 hasOpenAccess W4282941640 @default.
- W4282941640 hasPrimaryLocation W42829416401 @default.
- W4282941640 hasRelatedWork W1972656095 @default.
- W4282941640 hasRelatedWork W2024160000 @default.
- W4282941640 hasRelatedWork W2061273563 @default.
- W4282941640 hasRelatedWork W2285052147 @default.
- W4282941640 hasRelatedWork W2729514902 @default.
- W4282941640 hasRelatedWork W2743258233 @default.
- W4282941640 hasRelatedWork W2773500201 @default.
- W4282941640 hasRelatedWork W2970216048 @default.