Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282942719> ?p ?o ?g. }
- W4282942719 endingPage "106182" @default.
- W4282942719 startingPage "106182" @default.
- W4282942719 abstract "Realizing accurate measurement for thermal contact conductance (TCC) is difficult and needs many additional measurements. In this paper, we design a three-layer back propagation artificial neural network (ANN) model to retrieve TCC of two contact solid specimens. The model can retrieve TCC only according to the measured temperatures and loading pressures, and the effects of loading pressure, temperature and surface roughness on TCC are considered. Besides, thermal conductivity, heat flux and the parameter of the TCC empirical fitting formula can be obtained simultaneously. The retrieved results are validated by experimental values. The results show that for two contact pairs with different surface roughness, the retrieved parameters of TCC empirical fitting formula are clear reasonable and can be explained conceptually compared with the published studies." @default.
- W4282942719 created "2022-06-16" @default.
- W4282942719 creator A5001196671 @default.
- W4282942719 creator A5043401222 @default.
- W4282942719 creator A5043984767 @default.
- W4282942719 creator A5070590431 @default.
- W4282942719 date "2022-07-01" @default.
- W4282942719 modified "2023-09-25" @default.
- W4282942719 title "Exploring thermal contact conductance between two contact solids by artificial neural network" @default.
- W4282942719 cites W1969285967 @default.
- W4282942719 cites W2038029520 @default.
- W4282942719 cites W2039734327 @default.
- W4282942719 cites W2045530097 @default.
- W4282942719 cites W2060147246 @default.
- W4282942719 cites W2066139565 @default.
- W4282942719 cites W2086502813 @default.
- W4282942719 cites W2120212238 @default.
- W4282942719 cites W2124088536 @default.
- W4282942719 cites W2144325198 @default.
- W4282942719 cites W2192724399 @default.
- W4282942719 cites W2522029891 @default.
- W4282942719 cites W2580185083 @default.
- W4282942719 cites W2588030450 @default.
- W4282942719 cites W2611557858 @default.
- W4282942719 cites W2735287186 @default.
- W4282942719 cites W2742014174 @default.
- W4282942719 cites W2884979960 @default.
- W4282942719 cites W2890131401 @default.
- W4282942719 cites W2911731006 @default.
- W4282942719 cites W2997920388 @default.
- W4282942719 cites W3080966839 @default.
- W4282942719 cites W3117888719 @default.
- W4282942719 cites W3148466951 @default.
- W4282942719 cites W3156883823 @default.
- W4282942719 cites W3160943921 @default.
- W4282942719 cites W3188977647 @default.
- W4282942719 cites W610026615 @default.
- W4282942719 doi "https://doi.org/10.1016/j.icheatmasstransfer.2022.106182" @default.
- W4282942719 hasPublicationYear "2022" @default.
- W4282942719 type Work @default.
- W4282942719 citedByCount "1" @default.
- W4282942719 countsByYear W42829427192023 @default.
- W4282942719 crossrefType "journal-article" @default.
- W4282942719 hasAuthorship W4282942719A5001196671 @default.
- W4282942719 hasAuthorship W4282942719A5043401222 @default.
- W4282942719 hasAuthorship W4282942719A5043984767 @default.
- W4282942719 hasAuthorship W4282942719A5070590431 @default.
- W4282942719 hasConcept C107365816 @default.
- W4282942719 hasConcept C121332964 @default.
- W4282942719 hasConcept C137693562 @default.
- W4282942719 hasConcept C142014798 @default.
- W4282942719 hasConcept C154945302 @default.
- W4282942719 hasConcept C159188206 @default.
- W4282942719 hasConcept C159985019 @default.
- W4282942719 hasConcept C192562407 @default.
- W4282942719 hasConcept C204530211 @default.
- W4282942719 hasConcept C33373654 @default.
- W4282942719 hasConcept C41008148 @default.
- W4282942719 hasConcept C45058047 @default.
- W4282942719 hasConcept C50517652 @default.
- W4282942719 hasConcept C50644808 @default.
- W4282942719 hasConcept C57879066 @default.
- W4282942719 hasConcept C71039073 @default.
- W4282942719 hasConcept C97346530 @default.
- W4282942719 hasConcept C97355855 @default.
- W4282942719 hasConceptScore W4282942719C107365816 @default.
- W4282942719 hasConceptScore W4282942719C121332964 @default.
- W4282942719 hasConceptScore W4282942719C137693562 @default.
- W4282942719 hasConceptScore W4282942719C142014798 @default.
- W4282942719 hasConceptScore W4282942719C154945302 @default.
- W4282942719 hasConceptScore W4282942719C159188206 @default.
- W4282942719 hasConceptScore W4282942719C159985019 @default.
- W4282942719 hasConceptScore W4282942719C192562407 @default.
- W4282942719 hasConceptScore W4282942719C204530211 @default.
- W4282942719 hasConceptScore W4282942719C33373654 @default.
- W4282942719 hasConceptScore W4282942719C41008148 @default.
- W4282942719 hasConceptScore W4282942719C45058047 @default.
- W4282942719 hasConceptScore W4282942719C50517652 @default.
- W4282942719 hasConceptScore W4282942719C50644808 @default.
- W4282942719 hasConceptScore W4282942719C57879066 @default.
- W4282942719 hasConceptScore W4282942719C71039073 @default.
- W4282942719 hasConceptScore W4282942719C97346530 @default.
- W4282942719 hasConceptScore W4282942719C97355855 @default.
- W4282942719 hasFunder F4320321001 @default.
- W4282942719 hasFunder F4320327720 @default.
- W4282942719 hasFunder F4320327912 @default.
- W4282942719 hasLocation W42829427191 @default.
- W4282942719 hasOpenAccess W4282942719 @default.
- W4282942719 hasPrimaryLocation W42829427191 @default.
- W4282942719 hasRelatedWork W1972554683 @default.
- W4282942719 hasRelatedWork W2009334388 @default.
- W4282942719 hasRelatedWork W2015492317 @default.
- W4282942719 hasRelatedWork W2066656442 @default.
- W4282942719 hasRelatedWork W2159368642 @default.
- W4282942719 hasRelatedWork W2332519591 @default.
- W4282942719 hasRelatedWork W2604231558 @default.
- W4282942719 hasRelatedWork W2914571142 @default.
- W4282942719 hasRelatedWork W3037513990 @default.