Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282943072> ?p ?o ?g. }
- W4282943072 endingPage "4564" @default.
- W4282943072 startingPage "4555" @default.
- W4282943072 abstract "Artificial neural networks (ANNs) were developed to accurately predict the self-diffusion constants for individual components in binary fluid mixtures. The ANNs were tested on an experimental database of 4328 self-diffusion constants from 131 mixtures containing 75 unique compounds. The presence of strong hydrogen bonding molecules may lead to clustering or dimerization resulting in non-linear diffusive behavior. To address this, self- and binary association energies were calculated for each molecule and mixture to provide information on intermolecular interaction strength and were used as input features to the ANN. An accurate, generalized ANN model was developed with an overall average absolute deviation of 4.1%. Forward input feature selection reveals the importance of critical properties and self-association energies along with other fluid properties. Additional ANNs were developed with subsets of the full input feature set to further investigate the impact of various properties on model performance. The results from two specific mixtures are discussed in additional detail: one providing an example of strong hydrogen bonding and the other an example of extreme pressure changes, with the ANN models predicting self-diffusion well in both cases." @default.
- W4282943072 created "2022-06-16" @default.
- W4282943072 creator A5065193982 @default.
- W4282943072 creator A5079643424 @default.
- W4282943072 creator A5089701460 @default.
- W4282943072 date "2022-06-08" @default.
- W4282943072 modified "2023-10-03" @default.
- W4282943072 title "Prediction of Self-Diffusion in Binary Fluid Mixtures Using Artificial Neural Networks" @default.
- W4282943072 cites W1543821825 @default.
- W4282943072 cites W1576320143 @default.
- W4282943072 cites W1588337522 @default.
- W4282943072 cites W1678917058 @default.
- W4282943072 cites W1763673911 @default.
- W4282943072 cites W1975352716 @default.
- W4282943072 cites W1988254386 @default.
- W4282943072 cites W1991021387 @default.
- W4282943072 cites W1995942609 @default.
- W4282943072 cites W2002150621 @default.
- W4282943072 cites W2007971484 @default.
- W4282943072 cites W2010034620 @default.
- W4282943072 cites W2010656832 @default.
- W4282943072 cites W2019958740 @default.
- W4282943072 cites W2024245596 @default.
- W4282943072 cites W2025492822 @default.
- W4282943072 cites W2028446186 @default.
- W4282943072 cites W2029849623 @default.
- W4282943072 cites W2041791898 @default.
- W4282943072 cites W2043307819 @default.
- W4282943072 cites W2049854384 @default.
- W4282943072 cites W2050235279 @default.
- W4282943072 cites W2054280951 @default.
- W4282943072 cites W2058836701 @default.
- W4282943072 cites W2059692135 @default.
- W4282943072 cites W2072279538 @default.
- W4282943072 cites W2086294714 @default.
- W4282943072 cites W2087070363 @default.
- W4282943072 cites W2095363658 @default.
- W4282943072 cites W2134649441 @default.
- W4282943072 cites W2162166182 @default.
- W4282943072 cites W2217059320 @default.
- W4282943072 cites W2256578114 @default.
- W4282943072 cites W2304325242 @default.
- W4282943072 cites W2321643958 @default.
- W4282943072 cites W2326838243 @default.
- W4282943072 cites W2327831928 @default.
- W4282943072 cites W2501457886 @default.
- W4282943072 cites W2623307072 @default.
- W4282943072 cites W2801572038 @default.
- W4282943072 cites W2886883896 @default.
- W4282943072 cites W2887598572 @default.
- W4282943072 cites W2895318621 @default.
- W4282943072 cites W2973100519 @default.
- W4282943072 cites W2985067383 @default.
- W4282943072 cites W3021168369 @default.
- W4282943072 cites W3043792974 @default.
- W4282943072 cites W3047166258 @default.
- W4282943072 cites W3092178923 @default.
- W4282943072 cites W3108575536 @default.
- W4282943072 cites W3118776295 @default.
- W4282943072 cites W3132158698 @default.
- W4282943072 cites W3212242419 @default.
- W4282943072 cites W3212628482 @default.
- W4282943072 cites W4205328756 @default.
- W4282943072 cites W4214645267 @default.
- W4282943072 cites W4224058524 @default.
- W4282943072 doi "https://doi.org/10.1021/acs.jpcb.2c01723" @default.
- W4282943072 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35675158" @default.
- W4282943072 hasPublicationYear "2022" @default.
- W4282943072 type Work @default.
- W4282943072 citedByCount "3" @default.
- W4282943072 countsByYear W42829430722023 @default.
- W4282943072 crossrefType "journal-article" @default.
- W4282943072 hasAuthorship W4282943072A5065193982 @default.
- W4282943072 hasAuthorship W4282943072A5079643424 @default.
- W4282943072 hasAuthorship W4282943072A5089701460 @default.
- W4282943072 hasConcept C112887158 @default.
- W4282943072 hasConcept C121332964 @default.
- W4282943072 hasConcept C121864883 @default.
- W4282943072 hasConcept C147597530 @default.
- W4282943072 hasConcept C154945302 @default.
- W4282943072 hasConcept C166950319 @default.
- W4282943072 hasConcept C178790620 @default.
- W4282943072 hasConcept C185592680 @default.
- W4282943072 hasConcept C186060115 @default.
- W4282943072 hasConcept C192562407 @default.
- W4282943072 hasConcept C32909587 @default.
- W4282943072 hasConcept C33923547 @default.
- W4282943072 hasConcept C41008148 @default.
- W4282943072 hasConcept C48372109 @default.
- W4282943072 hasConcept C50644808 @default.
- W4282943072 hasConcept C59593255 @default.
- W4282943072 hasConcept C69357855 @default.
- W4282943072 hasConcept C86803240 @default.
- W4282943072 hasConcept C94375191 @default.
- W4282943072 hasConcept C97355855 @default.
- W4282943072 hasConceptScore W4282943072C112887158 @default.
- W4282943072 hasConceptScore W4282943072C121332964 @default.
- W4282943072 hasConceptScore W4282943072C121864883 @default.