Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282945183> ?p ?o ?g. }
- W4282945183 endingPage "345" @default.
- W4282945183 startingPage "336" @default.
- W4282945183 abstract "Orthognathic surgery corrects jaw deformities to improve aesthetics and functions. Due to the complexity of the craniomaxillofacial (CMF) anatomy, orthognathic surgery requires precise surgical planning, which involves predicting postoperative changes in facial appearance. To this end, most conventional methods involve simulation with biomechanical modeling methods, which are labor intensive and computationally expensive. Here we introduce a learning-based framework to speed up the simulation of postoperative facial appearances. Specifically, we introduce a facial shape change prediction network (FSC-Net) to learn the nonlinear mapping from bony shape changes to facial shape changes. FSC-Net is a point transform network weakly-supervised by paired preoperative and postoperative data without point-wise correspondence. In FSC-Net, a distance-guided shape loss places more emphasis on the jaw region. A local point constraint loss restricts point displacements to preserve the topology and smoothness of the surface mesh after point transformation. Evaluation results indicate that FSC-Net achieves 15× speedup with accuracy comparable to a state-of-the-art (SOTA) finite-element modeling (FEM) method." @default.
- W4282945183 created "2022-06-16" @default.
- W4282945183 creator A5000641105 @default.
- W4282945183 creator A5009621488 @default.
- W4282945183 creator A5012191313 @default.
- W4282945183 creator A5012191915 @default.
- W4282945183 creator A5022474270 @default.
- W4282945183 creator A5023955845 @default.
- W4282945183 creator A5031905516 @default.
- W4282945183 creator A5054315643 @default.
- W4282945183 creator A5057526429 @default.
- W4282945183 creator A5069309146 @default.
- W4282945183 creator A5071375088 @default.
- W4282945183 creator A5077300873 @default.
- W4282945183 date "2023-02-01" @default.
- W4282945183 modified "2023-10-18" @default.
- W4282945183 title "Simulation of Postoperative Facial Appearances via Geometric Deep Learning for Efficient Orthognathic Surgical Planning" @default.
- W4282945183 cites W1661082405 @default.
- W4282945183 cites W1840759234 @default.
- W4282945183 cites W1969595384 @default.
- W4282945183 cites W2022693776 @default.
- W4282945183 cites W2027489312 @default.
- W4282945183 cites W2028344184 @default.
- W4282945183 cites W2061390859 @default.
- W4282945183 cites W2087914744 @default.
- W4282945183 cites W2125113735 @default.
- W4282945183 cites W2134236847 @default.
- W4282945183 cites W2143555265 @default.
- W4282945183 cites W2168417043 @default.
- W4282945183 cites W2173907415 @default.
- W4282945183 cites W2345740540 @default.
- W4282945183 cites W2560722161 @default.
- W4282945183 cites W2565419990 @default.
- W4282945183 cites W2606941820 @default.
- W4282945183 cites W2621203875 @default.
- W4282945183 cites W2800812237 @default.
- W4282945183 cites W2924104858 @default.
- W4282945183 cites W2955873422 @default.
- W4282945183 cites W2963158438 @default.
- W4282945183 cites W2963231572 @default.
- W4282945183 cites W2968474279 @default.
- W4282945183 cites W2977796156 @default.
- W4282945183 cites W2979564147 @default.
- W4282945183 cites W2990240688 @default.
- W4282945183 cites W2997088169 @default.
- W4282945183 cites W2997337685 @default.
- W4282945183 cites W3031288689 @default.
- W4282945183 cites W3039448353 @default.
- W4282945183 cites W3098903961 @default.
- W4282945183 cites W3107393033 @default.
- W4282945183 cites W3202333804 @default.
- W4282945183 cites W3204395246 @default.
- W4282945183 doi "https://doi.org/10.1109/tmi.2022.3180078" @default.
- W4282945183 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35657829" @default.
- W4282945183 hasPublicationYear "2023" @default.
- W4282945183 type Work @default.
- W4282945183 citedByCount "6" @default.
- W4282945183 countsByYear W42829451832022 @default.
- W4282945183 countsByYear W42829451832023 @default.
- W4282945183 crossrefType "journal-article" @default.
- W4282945183 hasAuthorship W4282945183A5000641105 @default.
- W4282945183 hasAuthorship W4282945183A5009621488 @default.
- W4282945183 hasAuthorship W4282945183A5012191313 @default.
- W4282945183 hasAuthorship W4282945183A5012191915 @default.
- W4282945183 hasAuthorship W4282945183A5022474270 @default.
- W4282945183 hasAuthorship W4282945183A5023955845 @default.
- W4282945183 hasAuthorship W4282945183A5031905516 @default.
- W4282945183 hasAuthorship W4282945183A5054315643 @default.
- W4282945183 hasAuthorship W4282945183A5057526429 @default.
- W4282945183 hasAuthorship W4282945183A5069309146 @default.
- W4282945183 hasAuthorship W4282945183A5071375088 @default.
- W4282945183 hasAuthorship W4282945183A5077300873 @default.
- W4282945183 hasConcept C102634674 @default.
- W4282945183 hasConcept C129641003 @default.
- W4282945183 hasConcept C134306372 @default.
- W4282945183 hasConcept C141071460 @default.
- W4282945183 hasConcept C154945302 @default.
- W4282945183 hasConcept C195704467 @default.
- W4282945183 hasConcept C2524010 @default.
- W4282945183 hasConcept C2776036281 @default.
- W4282945183 hasConcept C2776347944 @default.
- W4282945183 hasConcept C2779370443 @default.
- W4282945183 hasConcept C28719098 @default.
- W4282945183 hasConcept C29694066 @default.
- W4282945183 hasConcept C31972630 @default.
- W4282945183 hasConcept C33923547 @default.
- W4282945183 hasConcept C41008148 @default.
- W4282945183 hasConcept C71924100 @default.
- W4282945183 hasConcept C89600930 @default.
- W4282945183 hasConceptScore W4282945183C102634674 @default.
- W4282945183 hasConceptScore W4282945183C129641003 @default.
- W4282945183 hasConceptScore W4282945183C134306372 @default.
- W4282945183 hasConceptScore W4282945183C141071460 @default.
- W4282945183 hasConceptScore W4282945183C154945302 @default.
- W4282945183 hasConceptScore W4282945183C195704467 @default.
- W4282945183 hasConceptScore W4282945183C2524010 @default.
- W4282945183 hasConceptScore W4282945183C2776036281 @default.
- W4282945183 hasConceptScore W4282945183C2776347944 @default.