Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282962743> ?p ?o ?g. }
- W4282962743 endingPage "1792" @default.
- W4282962743 startingPage "1775" @default.
- W4282962743 abstract "The efficient C–H polarization is the prerequisite for the low-temperature photocatalytic CH 4 conversion, which is restricted by the poor C–H stretching ability of short-distance adjacent lattice atoms. Here, a frustrated Lewis pair (FLP) composed of doped metal in TiO 2 as Lewis acid (LA) and neighboring Ti–OH as Lewis base (LB) with a long distance (0.31–0.37 nm) was designed through DFT calculation and fabricated by hydrogenation treatment of metal-doped TiO 2 –SiO 2 with macroporous-mesoporous structure. Benefitting from the long LA-LB distance and matched acid-base intensity, hydrogenated Ga-doped composite achieves superior C–H stretching with a high photocatalytic CH 4 conversion rate (139 μmol g −1 h −1 ). The photo-irradiation causes electron excitation from Ga to Ti–OH according to the time-dependent DFT calculation and in situ EPR analysis, which promotes the formation and coupling of ·CH 3 . This work provides a key underpinning for regulating the characteristics of FLP for C–H activation and C–C coupling via light irradiation. • Frustrated Lewis pair (FLP) in defective TiO 2 was designed by DFT calculation • 139 μmol g −1 h −1 CH 4 conversion rate in NOCM is achieved under irradiation • FLP with long distance and suitable Lewis intensity is conducive to C–H stretching • Photo-irradiation promotes the formation and coupling of CH 3 The serious greenhouse effect caused by the massive use of fossil energy is an inevitable environmental problem in today’s world. In particular, the greenhouse effect of methane is 25 times that of CO 2 . However, the traditional methane conversion process consumes a great deal of energy. This study emphasizes the efficient conversion of methane driven by green and renewable solar energy under mild conditions. Its fundamental principle is to generate a charge by using light in semiconductors. The efficient conversion of methane is attributed to the unique active sites designed on TiO 2 , such as magnets, which attract C and H, respectively, effectively break the C–H bond, and generate high-value products under the action of a photogenerated charge. This research does not require the high temperature and high pressure of traditional industry and is of great significance to realize energy development and environmental protection that is beneficial to all. Long LA–LB distance and strong acid and base intensities promote the stretching of the C–H bond. The effect of light irradiation on improving the intensities of LA Ga and LB Ti–OH was confirmed based on the electron transition from LA to LB, which is the key to forming methyl and hydrogen radicals for the further coupling production of C 2 H 6 ." @default.
- W4282962743 created "2022-06-17" @default.
- W4282962743 creator A5001457544 @default.
- W4282962743 creator A5016821352 @default.
- W4282962743 creator A5034614651 @default.
- W4282962743 creator A5035445599 @default.
- W4282962743 creator A5042227361 @default.
- W4282962743 creator A5050352409 @default.
- W4282962743 creator A5058442997 @default.
- W4282962743 creator A5059192794 @default.
- W4282962743 creator A5063253432 @default.
- W4282962743 creator A5067320385 @default.
- W4282962743 date "2022-07-01" @default.
- W4282962743 modified "2023-10-10" @default.
- W4282962743 title "Design of frustrated Lewis pair in defective TiO2 for photocatalytic non-oxidative methane coupling" @default.
- W4282962743 cites W1981368803 @default.
- W4282962743 cites W1986353432 @default.
- W4282962743 cites W1991259584 @default.
- W4282962743 cites W1996846370 @default.
- W4282962743 cites W2008389859 @default.
- W4282962743 cites W2029667189 @default.
- W4282962743 cites W2039948490 @default.
- W4282962743 cites W2042961373 @default.
- W4282962743 cites W2057815662 @default.
- W4282962743 cites W2058860627 @default.
- W4282962743 cites W2062852634 @default.
- W4282962743 cites W2064679320 @default.
- W4282962743 cites W2070227796 @default.
- W4282962743 cites W2079009740 @default.
- W4282962743 cites W2086957099 @default.
- W4282962743 cites W2092157292 @default.
- W4282962743 cites W2101603110 @default.
- W4282962743 cites W2119925530 @default.
- W4282962743 cites W2132525235 @default.
- W4282962743 cites W2159752439 @default.
- W4282962743 cites W2166244948 @default.
- W4282962743 cites W2230728100 @default.
- W4282962743 cites W2233947154 @default.
- W4282962743 cites W2265728924 @default.
- W4282962743 cites W2324860830 @default.
- W4282962743 cites W2326615756 @default.
- W4282962743 cites W2334093289 @default.
- W4282962743 cites W2404142766 @default.
- W4282962743 cites W2472529293 @default.
- W4282962743 cites W2560096417 @default.
- W4282962743 cites W2580537078 @default.
- W4282962743 cites W2594353993 @default.
- W4282962743 cites W2616799570 @default.
- W4282962743 cites W2769535519 @default.
- W4282962743 cites W2779985101 @default.
- W4282962743 cites W2793566282 @default.
- W4282962743 cites W2891020008 @default.
- W4282962743 cites W2921638189 @default.
- W4282962743 cites W2928083827 @default.
- W4282962743 cites W2938371331 @default.
- W4282962743 cites W2944472400 @default.
- W4282962743 cites W2957108895 @default.
- W4282962743 cites W3016296213 @default.
- W4282962743 cites W3022212696 @default.
- W4282962743 cites W3022744074 @default.
- W4282962743 cites W3048820896 @default.
- W4282962743 cites W3082755690 @default.
- W4282962743 cites W3093345428 @default.
- W4282962743 cites W3094937539 @default.
- W4282962743 cites W3097391371 @default.
- W4282962743 cites W3108606708 @default.
- W4282962743 cites W3135891482 @default.
- W4282962743 cites W3145447959 @default.
- W4282962743 cites W3165760036 @default.
- W4282962743 cites W3206606417 @default.
- W4282962743 cites W3208933050 @default.
- W4282962743 cites W4238409373 @default.
- W4282962743 cites W4248244461 @default.
- W4282962743 cites W4249255926 @default.
- W4282962743 doi "https://doi.org/10.1016/j.checat.2022.05.016" @default.
- W4282962743 hasPublicationYear "2022" @default.
- W4282962743 type Work @default.
- W4282962743 citedByCount "7" @default.
- W4282962743 countsByYear W42829627432023 @default.
- W4282962743 crossrefType "journal-article" @default.
- W4282962743 hasAuthorship W4282962743A5001457544 @default.
- W4282962743 hasAuthorship W4282962743A5016821352 @default.
- W4282962743 hasAuthorship W4282962743A5034614651 @default.
- W4282962743 hasAuthorship W4282962743A5035445599 @default.
- W4282962743 hasAuthorship W4282962743A5042227361 @default.
- W4282962743 hasAuthorship W4282962743A5050352409 @default.
- W4282962743 hasAuthorship W4282962743A5058442997 @default.
- W4282962743 hasAuthorship W4282962743A5059192794 @default.
- W4282962743 hasAuthorship W4282962743A5063253432 @default.
- W4282962743 hasAuthorship W4282962743A5067320385 @default.
- W4282962743 hasBestOaLocation W42829627431 @default.
- W4282962743 hasConcept C131584629 @default.
- W4282962743 hasConcept C159985019 @default.
- W4282962743 hasConcept C161790260 @default.
- W4282962743 hasConcept C163638829 @default.
- W4282962743 hasConcept C178790620 @default.
- W4282962743 hasConcept C185592680 @default.
- W4282962743 hasConcept C192562407 @default.