Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282966127> ?p ?o ?g. }
- W4282966127 endingPage "6079" @default.
- W4282966127 startingPage "6079" @default.
- W4282966127 abstract "The great potential of the convolutional neural networks (CNNs) provides novel and alternative ways to monitor important parameters with high accuracy. In this study, we developed a soft sensor model for dynamic processes based on a CNN for the measurement of suspended solids and turbidity from a single image of the liquid sample to be measured by using a commercial smartphone camera (Android or IOS system) and light-emitting diode (LED) illumination. For this, an image dataset of liquid samples illuminated with white, red, green, and blue LED light was taken and used to train a CNN and fit a multiple linear regression (MLR) by using different color lighting, we evaluated which color gives more accurate information about the concentration of suspended particles in the sample. We implemented a pre-trained AlexNet model, and an MLR to estimate total suspended solids (TSS), and turbidity values in liquid samples based on suspended particles. The proposed technique obtained high goodness of fit (R2 = 0.99). The best performance was achieved using white light, with an accuracy of 98.24% and 97.20% for TSS and turbidity, respectively, with an operational range of 0–800 mgL−1, and 0–306 NTU. This system was designed for aquaculture environments and tested with both commercial fish feed and paprika. This motivates further research with different aquatic environments such as river water, domestic and industrial wastewater, and potable water, among others." @default.
- W4282966127 created "2022-06-17" @default.
- W4282966127 creator A5013105546 @default.
- W4282966127 creator A5015872473 @default.
- W4282966127 creator A5032217883 @default.
- W4282966127 creator A5060212159 @default.
- W4282966127 creator A5070605038 @default.
- W4282966127 creator A5089258273 @default.
- W4282966127 creator A5089448827 @default.
- W4282966127 date "2022-06-15" @default.
- W4282966127 modified "2023-10-18" @default.
- W4282966127 title "Convolutional Neural Network for Measurement of Suspended Solids and Turbidity" @default.
- W4282966127 cites W1593727536 @default.
- W4282966127 cites W1963514075 @default.
- W4282966127 cites W1977629543 @default.
- W4282966127 cites W1987437771 @default.
- W4282966127 cites W1990673274 @default.
- W4282966127 cites W1995618441 @default.
- W4282966127 cites W2023900669 @default.
- W4282966127 cites W2040604178 @default.
- W4282966127 cites W2099789794 @default.
- W4282966127 cites W2139896222 @default.
- W4282966127 cites W218184633 @default.
- W4282966127 cites W2268875920 @default.
- W4282966127 cites W2597797985 @default.
- W4282966127 cites W2746325398 @default.
- W4282966127 cites W2761034629 @default.
- W4282966127 cites W2787184083 @default.
- W4282966127 cites W2789255992 @default.
- W4282966127 cites W2789441067 @default.
- W4282966127 cites W2879680718 @default.
- W4282966127 cites W2899902037 @default.
- W4282966127 cites W2900988758 @default.
- W4282966127 cites W2902381888 @default.
- W4282966127 cites W2946994806 @default.
- W4282966127 cites W2955114891 @default.
- W4282966127 cites W2959521400 @default.
- W4282966127 cites W2997363043 @default.
- W4282966127 cites W3006450303 @default.
- W4282966127 cites W3009626049 @default.
- W4282966127 cites W3015225684 @default.
- W4282966127 cites W3021415190 @default.
- W4282966127 cites W3028207611 @default.
- W4282966127 cites W3032569663 @default.
- W4282966127 cites W3043472241 @default.
- W4282966127 cites W3044383208 @default.
- W4282966127 cites W3194244841 @default.
- W4282966127 cites W3215884018 @default.
- W4282966127 cites W4210297321 @default.
- W4282966127 doi "https://doi.org/10.3390/app12126079" @default.
- W4282966127 hasPublicationYear "2022" @default.
- W4282966127 type Work @default.
- W4282966127 citedByCount "1" @default.
- W4282966127 countsByYear W42829661272023 @default.
- W4282966127 crossrefType "journal-article" @default.
- W4282966127 hasAuthorship W4282966127A5013105546 @default.
- W4282966127 hasAuthorship W4282966127A5015872473 @default.
- W4282966127 hasAuthorship W4282966127A5032217883 @default.
- W4282966127 hasAuthorship W4282966127A5060212159 @default.
- W4282966127 hasAuthorship W4282966127A5070605038 @default.
- W4282966127 hasAuthorship W4282966127A5089258273 @default.
- W4282966127 hasAuthorship W4282966127A5089448827 @default.
- W4282966127 hasBestOaLocation W42829661271 @default.
- W4282966127 hasConcept C111368507 @default.
- W4282966127 hasConcept C127313418 @default.
- W4282966127 hasConcept C127413603 @default.
- W4282966127 hasConcept C154945302 @default.
- W4282966127 hasConcept C188287460 @default.
- W4282966127 hasConcept C19570952 @default.
- W4282966127 hasConcept C21880701 @default.
- W4282966127 hasConcept C39432304 @default.
- W4282966127 hasConcept C41008148 @default.
- W4282966127 hasConcept C4891672 @default.
- W4282966127 hasConcept C64016661 @default.
- W4282966127 hasConcept C81363708 @default.
- W4282966127 hasConcept C87717796 @default.
- W4282966127 hasConcept C94061648 @default.
- W4282966127 hasConceptScore W4282966127C111368507 @default.
- W4282966127 hasConceptScore W4282966127C127313418 @default.
- W4282966127 hasConceptScore W4282966127C127413603 @default.
- W4282966127 hasConceptScore W4282966127C154945302 @default.
- W4282966127 hasConceptScore W4282966127C188287460 @default.
- W4282966127 hasConceptScore W4282966127C19570952 @default.
- W4282966127 hasConceptScore W4282966127C21880701 @default.
- W4282966127 hasConceptScore W4282966127C39432304 @default.
- W4282966127 hasConceptScore W4282966127C41008148 @default.
- W4282966127 hasConceptScore W4282966127C4891672 @default.
- W4282966127 hasConceptScore W4282966127C64016661 @default.
- W4282966127 hasConceptScore W4282966127C81363708 @default.
- W4282966127 hasConceptScore W4282966127C87717796 @default.
- W4282966127 hasConceptScore W4282966127C94061648 @default.
- W4282966127 hasIssue "12" @default.
- W4282966127 hasLocation W42829661271 @default.
- W4282966127 hasOpenAccess W4282966127 @default.
- W4282966127 hasPrimaryLocation W42829661271 @default.
- W4282966127 hasRelatedWork W2184336031 @default.
- W4282966127 hasRelatedWork W2187803588 @default.
- W4282966127 hasRelatedWork W2559924424 @default.