Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282967360> ?p ?o ?g. }
- W4282967360 endingPage "101672" @default.
- W4282967360 startingPage "101672" @default.
- W4282967360 abstract "Automated defect inspection of texture surface is still a challenging task in the industrial automation field due to the tremendous changes in the appearance of various surface textures. We present a simple but powerful image transformation network to remove textures and highlight defects at full resolution. The simple full convolution network consists only of 3 × 3 regular convolution and several dilated convolution blocks, which makes it compact and able to capture multi-scale features effectively. To further improve the ability of the network to suppress texture and highlight defects, a polynomial loss function combining perceptual loss, structural similarity loss and image gradient loss is proposed. In addition, a semi-automatic annotation method mainly composed of wavelet transform and relative total variation is designed to generate a data set of image pairs containing the original texture image and the desired texture removal image. We conducted experiments on a milled metal surface defect dataset and an open data set containing various textured backgrounds to evaluate the performance of our method. Compared with other convolutional neural network approaches, the results demonstrate the superiority of the proposed method. The method has been applied to the surface defect online detection system of an aluminum ingot milling production line, which effectively improves the surface inspection efficiency and product quality." @default.
- W4282967360 created "2022-06-17" @default.
- W4282967360 creator A5004872807 @default.
- W4282967360 creator A5024058979 @default.
- W4282967360 creator A5048183325 @default.
- W4282967360 creator A5078357967 @default.
- W4282967360 date "2022-08-01" @default.
- W4282967360 modified "2023-09-27" @default.
- W4282967360 title "Automatic defect detection of texture surface with an efficient texture removal network" @default.
- W4282967360 cites W1610060839 @default.
- W4282967360 cites W1901129140 @default.
- W4282967360 cites W1992117926 @default.
- W4282967360 cites W1995589954 @default.
- W4282967360 cites W2019483202 @default.
- W4282967360 cites W2035742536 @default.
- W4282967360 cites W2048632148 @default.
- W4282967360 cites W2062658581 @default.
- W4282967360 cites W2076844371 @default.
- W4282967360 cites W2093064884 @default.
- W4282967360 cites W2113101204 @default.
- W4282967360 cites W2133665775 @default.
- W4282967360 cites W2331128040 @default.
- W4282967360 cites W2344428106 @default.
- W4282967360 cites W2412782625 @default.
- W4282967360 cites W2501037751 @default.
- W4282967360 cites W2749684264 @default.
- W4282967360 cites W2791709739 @default.
- W4282967360 cites W2795647708 @default.
- W4282967360 cites W2803755786 @default.
- W4282967360 cites W2890747436 @default.
- W4282967360 cites W2907868778 @default.
- W4282967360 cites W2912069721 @default.
- W4282967360 cites W2954934694 @default.
- W4282967360 cites W2963363373 @default.
- W4282967360 cites W2985007053 @default.
- W4282967360 cites W3004109511 @default.
- W4282967360 cites W3022506809 @default.
- W4282967360 cites W3087751617 @default.
- W4282967360 cites W3099620610 @default.
- W4282967360 cites W3112984608 @default.
- W4282967360 cites W3135077060 @default.
- W4282967360 cites W3161622979 @default.
- W4282967360 cites W3167976421 @default.
- W4282967360 doi "https://doi.org/10.1016/j.aei.2022.101672" @default.
- W4282967360 hasPublicationYear "2022" @default.
- W4282967360 type Work @default.
- W4282967360 citedByCount "7" @default.
- W4282967360 countsByYear W42829673602022 @default.
- W4282967360 countsByYear W42829673602023 @default.
- W4282967360 crossrefType "journal-article" @default.
- W4282967360 hasAuthorship W4282967360A5004872807 @default.
- W4282967360 hasAuthorship W4282967360A5024058979 @default.
- W4282967360 hasAuthorship W4282967360A5048183325 @default.
- W4282967360 hasAuthorship W4282967360A5078357967 @default.
- W4282967360 hasConcept C103278499 @default.
- W4282967360 hasConcept C104317684 @default.
- W4282967360 hasConcept C115961682 @default.
- W4282967360 hasConcept C144743038 @default.
- W4282967360 hasConcept C153180895 @default.
- W4282967360 hasConcept C154945302 @default.
- W4282967360 hasConcept C165164221 @default.
- W4282967360 hasConcept C185592680 @default.
- W4282967360 hasConcept C196216189 @default.
- W4282967360 hasConcept C204241405 @default.
- W4282967360 hasConcept C2781195486 @default.
- W4282967360 hasConcept C31972630 @default.
- W4282967360 hasConcept C41008148 @default.
- W4282967360 hasConcept C45347329 @default.
- W4282967360 hasConcept C47432892 @default.
- W4282967360 hasConcept C50494287 @default.
- W4282967360 hasConcept C50644808 @default.
- W4282967360 hasConcept C54243161 @default.
- W4282967360 hasConcept C55493867 @default.
- W4282967360 hasConcept C63099799 @default.
- W4282967360 hasConcept C81363708 @default.
- W4282967360 hasConcept C9417928 @default.
- W4282967360 hasConceptScore W4282967360C103278499 @default.
- W4282967360 hasConceptScore W4282967360C104317684 @default.
- W4282967360 hasConceptScore W4282967360C115961682 @default.
- W4282967360 hasConceptScore W4282967360C144743038 @default.
- W4282967360 hasConceptScore W4282967360C153180895 @default.
- W4282967360 hasConceptScore W4282967360C154945302 @default.
- W4282967360 hasConceptScore W4282967360C165164221 @default.
- W4282967360 hasConceptScore W4282967360C185592680 @default.
- W4282967360 hasConceptScore W4282967360C196216189 @default.
- W4282967360 hasConceptScore W4282967360C204241405 @default.
- W4282967360 hasConceptScore W4282967360C2781195486 @default.
- W4282967360 hasConceptScore W4282967360C31972630 @default.
- W4282967360 hasConceptScore W4282967360C41008148 @default.
- W4282967360 hasConceptScore W4282967360C45347329 @default.
- W4282967360 hasConceptScore W4282967360C47432892 @default.
- W4282967360 hasConceptScore W4282967360C50494287 @default.
- W4282967360 hasConceptScore W4282967360C50644808 @default.
- W4282967360 hasConceptScore W4282967360C54243161 @default.
- W4282967360 hasConceptScore W4282967360C55493867 @default.
- W4282967360 hasConceptScore W4282967360C63099799 @default.
- W4282967360 hasConceptScore W4282967360C81363708 @default.
- W4282967360 hasConceptScore W4282967360C9417928 @default.