Matches in SemOpenAlex for { <https://semopenalex.org/work/W4282974753> ?p ?o ?g. }
- W4282974753 endingPage "100083" @default.
- W4282974753 startingPage "100083" @default.
- W4282974753 abstract "Several factors associated with disease diagnosis in plants using deep learning techniques must be considered to develop a robust system for accurate disease management. A considerable number of studies have investigated the potential of deep learning techniques for precision agriculture in the last decade. However, despite the range of applications, several gaps within plant disease research are yet to be addressed to support disease management on farms. Thus, there is a need to establish a knowledge base of existing applications and identify the challenges and opportunities to help advance the development of tools that address farmers' needs. This study presents a comprehensive overview of 70 studies on deep learning applications and the trends associated with their use for disease diagnosis and management in agriculture. The studies were sourced from four indexing services, namely Scopus, IEEE Xplore, Science Direct, and Google Scholar, and 11 main keywords used were Plant Diseases, Precision Agriculture, Unmanned Aerial System (UAS), Imagery Datasets, Image Processing, Machine Learning, Deep Learning, Transfer Learning, Image Classification, Object Detection, and Semantic Segmentation. The review is focused on providing a detailed assessment and considerations for developing deep learning-based tools for plant disease diagnosis in the form of seven key questions pertaining to (i) dataset requirements, availability, and usability, (ii) imaging sensors and data collection platforms, (iii) deep learning techniques, (iv) generalization of deep learning models, (v) disease severity estimation, (vi) deep learning and human accuracy comparison, and (vii) open research topics. These questions can help address existing research gaps by guiding further development and application of tools to support plant disease diagnosis and provide disease management support to farmers." @default.
- W4282974753 created "2022-06-17" @default.
- W4282974753 creator A5025951776 @default.
- W4282974753 creator A5046464635 @default.
- W4282974753 creator A5051018107 @default.
- W4282974753 date "2023-02-01" @default.
- W4282974753 modified "2023-10-05" @default.
- W4282974753 title "A survey on using deep learning techniques for plant disease diagnosis and recommendations for development of appropriate tools" @default.
- W4282974753 cites W1696827118 @default.
- W4282974753 cites W1998573323 @default.
- W4282974753 cites W2004732416 @default.
- W4282974753 cites W2005543329 @default.
- W4282974753 cites W2014020505 @default.
- W4282974753 cites W2019610851 @default.
- W4282974753 cites W2021496016 @default.
- W4282974753 cites W2077045971 @default.
- W4282974753 cites W2090813402 @default.
- W4282974753 cites W2103959917 @default.
- W4282974753 cites W2277854822 @default.
- W4282974753 cites W2322878586 @default.
- W4282974753 cites W2473156356 @default.
- W4282974753 cites W2561572938 @default.
- W4282974753 cites W2562201035 @default.
- W4282974753 cites W2599068109 @default.
- W4282974753 cites W2612844455 @default.
- W4282974753 cites W2614850301 @default.
- W4282974753 cites W2616728375 @default.
- W4282974753 cites W2730129132 @default.
- W4282974753 cites W2736026939 @default.
- W4282974753 cites W2753403518 @default.
- W4282974753 cites W2758216428 @default.
- W4282974753 cites W2776705292 @default.
- W4282974753 cites W2789255992 @default.
- W4282974753 cites W2790979755 @default.
- W4282974753 cites W2795016359 @default.
- W4282974753 cites W2799842361 @default.
- W4282974753 cites W2800739703 @default.
- W4282974753 cites W2801958709 @default.
- W4282974753 cites W2805772477 @default.
- W4282974753 cites W2808709127 @default.
- W4282974753 cites W2886555888 @default.
- W4282974753 cites W2887902433 @default.
- W4282974753 cites W2891667148 @default.
- W4282974753 cites W2911433502 @default.
- W4282974753 cites W2913766929 @default.
- W4282974753 cites W2923504698 @default.
- W4282974753 cites W2940118123 @default.
- W4282974753 cites W2940856955 @default.
- W4282974753 cites W2942719784 @default.
- W4282974753 cites W2954187519 @default.
- W4282974753 cites W2954934222 @default.
- W4282974753 cites W2963721881 @default.
- W4282974753 cites W2969292408 @default.
- W4282974753 cites W2969896545 @default.
- W4282974753 cites W2969933026 @default.
- W4282974753 cites W2976282159 @default.
- W4282974753 cites W2977144840 @default.
- W4282974753 cites W2980347326 @default.
- W4282974753 cites W2989784387 @default.
- W4282974753 cites W2997809778 @default.
- W4282974753 cites W2998829203 @default.
- W4282974753 cites W3005426330 @default.
- W4282974753 cites W3012657291 @default.
- W4282974753 cites W3014893687 @default.
- W4282974753 cites W3015562698 @default.
- W4282974753 cites W3017142502 @default.
- W4282974753 cites W3042909640 @default.
- W4282974753 cites W3083926560 @default.
- W4282974753 cites W3092128289 @default.
- W4282974753 cites W3093950702 @default.
- W4282974753 cites W3097291122 @default.
- W4282974753 cites W3120304543 @default.
- W4282974753 cites W3135361473 @default.
- W4282974753 cites W3136376090 @default.
- W4282974753 cites W3142830027 @default.
- W4282974753 cites W3162088729 @default.
- W4282974753 cites W3183376677 @default.
- W4282974753 cites W3192504607 @default.
- W4282974753 cites W3194021896 @default.
- W4282974753 cites W3202822501 @default.
- W4282974753 cites W3203917319 @default.
- W4282974753 cites W4205600418 @default.
- W4282974753 doi "https://doi.org/10.1016/j.atech.2022.100083" @default.
- W4282974753 hasPublicationYear "2023" @default.
- W4282974753 type Work @default.
- W4282974753 citedByCount "29" @default.
- W4282974753 countsByYear W42829747532022 @default.
- W4282974753 countsByYear W42829747532023 @default.
- W4282974753 crossrefType "journal-article" @default.
- W4282974753 hasAuthorship W4282974753A5025951776 @default.
- W4282974753 hasAuthorship W4282974753A5046464635 @default.
- W4282974753 hasAuthorship W4282974753A5051018107 @default.
- W4282974753 hasBestOaLocation W42829747531 @default.
- W4282974753 hasConcept C107457646 @default.
- W4282974753 hasConcept C108583219 @default.
- W4282974753 hasConcept C118518473 @default.
- W4282974753 hasConcept C119857082 @default.
- W4282974753 hasConcept C120217122 @default.