Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283013491> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4283013491 endingPage "117823" @default.
- W4283013491 startingPage "117823" @default.
- W4283013491 abstract "• Computing on edge end improves the efficiency and reliability of data analysis. • A lightweight CNN model is efficient for real-time crowd density estimation on edge. • Better crowd density inference speed with a slight increase in estimation accuracy. • Equip the model in an IoT device to monitor the crowd density in a Subway Station. Crowd stampedes and incidents are critical threats to public security that have caused countless deaths during the past few decades. To avoid crowd stampedes, real-time crowd density estimation can help monitor crowd movements, and thus support a timely evacuation strategy development. In previous studies, scholars and engineers developed multiple video-based crowd density estimation algorithms based on deep neural networks. The excessive computational complexity of deep learning algorithms exacerbated the algorithm’s efficiency, causing unacceptable real-time performance. In the Internet of Things era, deploying the crowd density estimation task with edge computing is an advanced strategy to maintain the real-time performance of the entire system. Considering the limited computational resources on the edge devices, deep learning-based crowd density estimation algorithms normally cannot be handled. To fulfill the deployment on the edge device, the algorithms need to be optimized with a smaller model size. Therefore, this paper proposes a lightweight Convolutional Neural Networks (CNN) based crowd density estimation model by combining the modified MobileNetv2 and the dilated convolution. Public crowd image data sets are used to conduct experiments for evaluating the performance of the proposed algorithm in terms of accuracy and inference speed. The results show that our model achieves much better inference speed accompanied by a slight increase in accuracy. The proposed method of this study can enhance the performance of the crowd monitoring system, and therefore help avoid crowd stampedes and incidents." @default.
- W4283013491 created "2022-06-18" @default.
- W4283013491 creator A5012268687 @default.
- W4283013491 creator A5047891218 @default.
- W4283013491 creator A5051434566 @default.
- W4283013491 creator A5090335612 @default.
- W4283013491 date "2022-11-01" @default.
- W4283013491 modified "2023-10-17" @default.
- W4283013491 title "Estimating crowd density with edge intelligence based on lightweight convolutional neural networks" @default.
- W4283013491 cites W2004278847 @default.
- W4283013491 cites W2039412848 @default.
- W4283013491 cites W2097117768 @default.
- W4283013491 cites W2403529265 @default.
- W4283013491 cites W2618530766 @default.
- W4283013491 cites W2741077351 @default.
- W4283013491 cites W2745597836 @default.
- W4283013491 cites W2753648062 @default.
- W4283013491 cites W2753791803 @default.
- W4283013491 cites W2783785907 @default.
- W4283013491 cites W2800727648 @default.
- W4283013491 cites W2808519136 @default.
- W4283013491 cites W2883780447 @default.
- W4283013491 cites W2891336752 @default.
- W4283013491 cites W2893813411 @default.
- W4283013491 cites W2896180420 @default.
- W4283013491 cites W2937076142 @default.
- W4283013491 cites W2956800107 @default.
- W4283013491 cites W2960833983 @default.
- W4283013491 cites W2962814013 @default.
- W4283013491 cites W2963446712 @default.
- W4283013491 cites W2964350391 @default.
- W4283013491 cites W2964754361 @default.
- W4283013491 cites W2982310474 @default.
- W4283013491 cites W2995304495 @default.
- W4283013491 cites W2998014461 @default.
- W4283013491 cites W3003149334 @default.
- W4283013491 cites W3007995477 @default.
- W4283013491 cites W3013557734 @default.
- W4283013491 cites W3018001946 @default.
- W4283013491 cites W3045940313 @default.
- W4283013491 cites W3081654345 @default.
- W4283013491 cites W3102632104 @default.
- W4283013491 cites W3169338828 @default.
- W4283013491 cites W3184606595 @default.
- W4283013491 cites W3197466490 @default.
- W4283013491 cites W3200991680 @default.
- W4283013491 cites W3207294606 @default.
- W4283013491 cites W3213348364 @default.
- W4283013491 cites W4205754825 @default.
- W4283013491 cites W4214863169 @default.
- W4283013491 cites W4225322470 @default.
- W4283013491 cites W4235435541 @default.
- W4283013491 cites W4249932213 @default.
- W4283013491 doi "https://doi.org/10.1016/j.eswa.2022.117823" @default.
- W4283013491 hasPublicationYear "2022" @default.
- W4283013491 type Work @default.
- W4283013491 citedByCount "12" @default.
- W4283013491 countsByYear W42830134912022 @default.
- W4283013491 countsByYear W42830134912023 @default.
- W4283013491 crossrefType "journal-article" @default.
- W4283013491 hasAuthorship W4283013491A5012268687 @default.
- W4283013491 hasAuthorship W4283013491A5047891218 @default.
- W4283013491 hasAuthorship W4283013491A5051434566 @default.
- W4283013491 hasAuthorship W4283013491A5090335612 @default.
- W4283013491 hasConcept C119857082 @default.
- W4283013491 hasConcept C153180895 @default.
- W4283013491 hasConcept C154945302 @default.
- W4283013491 hasConcept C162307627 @default.
- W4283013491 hasConcept C41008148 @default.
- W4283013491 hasConcept C50644808 @default.
- W4283013491 hasConcept C81363708 @default.
- W4283013491 hasConceptScore W4283013491C119857082 @default.
- W4283013491 hasConceptScore W4283013491C153180895 @default.
- W4283013491 hasConceptScore W4283013491C154945302 @default.
- W4283013491 hasConceptScore W4283013491C162307627 @default.
- W4283013491 hasConceptScore W4283013491C41008148 @default.
- W4283013491 hasConceptScore W4283013491C50644808 @default.
- W4283013491 hasConceptScore W4283013491C81363708 @default.
- W4283013491 hasLocation W42830134911 @default.
- W4283013491 hasOpenAccess W4283013491 @default.
- W4283013491 hasPrimaryLocation W42830134911 @default.
- W4283013491 hasRelatedWork W2175746458 @default.
- W4283013491 hasRelatedWork W2732542196 @default.
- W4283013491 hasRelatedWork W2738221750 @default.
- W4283013491 hasRelatedWork W2760085659 @default.
- W4283013491 hasRelatedWork W2912288872 @default.
- W4283013491 hasRelatedWork W3012978760 @default.
- W4283013491 hasRelatedWork W3027997911 @default.
- W4283013491 hasRelatedWork W3081496756 @default.
- W4283013491 hasRelatedWork W3093612317 @default.
- W4283013491 hasRelatedWork W4287776258 @default.
- W4283013491 hasVolume "206" @default.
- W4283013491 isParatext "false" @default.
- W4283013491 isRetracted "false" @default.
- W4283013491 workType "article" @default.