Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283016104> ?p ?o ?g. }
- W4283016104 endingPage "2874" @default.
- W4283016104 startingPage "2874" @default.
- W4283016104 abstract "Change detection of the newly constructed areas (NCAs) is important for urban development. The advances of remote sensing and deep learning algorithms promotes the high precision of the research work. In this study, we firstly constructed a high-resolution labels for change detection based on the GF-2 satellite images, and then applied five deep learning models of change detection, including STANets (BASE, BAM, and PAM), SNUNet (Siam-NestedUNet), and BiT (Bitemporal image Transformer) in the Core Region of Jiangbei New Area of Nanjing, China. The BiT model is based on transformer, and the others are based on CNN (Conventional Neural Network). Experiments have revealed that the STANet-PAM model generally performs the best in detecting the NCAs, and the STANet-PAM model can obtain more detailed information of land changes owing to its pyramid spatial-temporal attention module of multiple scales. At last, we have used the five models to analyze urbanization processes from 2015 to 2021 in the study area. Hopefully, the results of this study could be a momentous reference for urban development planning." @default.
- W4283016104 created "2022-06-18" @default.
- W4283016104 creator A5015689119 @default.
- W4283016104 creator A5017694608 @default.
- W4283016104 creator A5058689893 @default.
- W4283016104 date "2022-06-15" @default.
- W4283016104 modified "2023-09-25" @default.
- W4283016104 title "Machine-Learning-Based Change Detection of Newly Constructed Areas from GF-2 Imagery in Nanjing, China" @default.
- W4283016104 cites W1554757576 @default.
- W4283016104 cites W1978661379 @default.
- W4283016104 cites W1979061792 @default.
- W4283016104 cites W2011572981 @default.
- W4283016104 cites W2044609898 @default.
- W4283016104 cites W2091436265 @default.
- W4283016104 cites W2140023211 @default.
- W4283016104 cites W2737942288 @default.
- W4283016104 cites W2738855634 @default.
- W4283016104 cites W2741377155 @default.
- W4283016104 cites W2761352265 @default.
- W4283016104 cites W2773889238 @default.
- W4283016104 cites W2774181958 @default.
- W4283016104 cites W2780483148 @default.
- W4283016104 cites W2782522152 @default.
- W4283016104 cites W2789944120 @default.
- W4283016104 cites W2794284562 @default.
- W4283016104 cites W2896365540 @default.
- W4283016104 cites W2901571784 @default.
- W4283016104 cites W2914651367 @default.
- W4283016104 cites W2944679233 @default.
- W4283016104 cites W2945742768 @default.
- W4283016104 cites W2948648905 @default.
- W4283016104 cites W2951472911 @default.
- W4283016104 cites W2966594359 @default.
- W4283016104 cites W3004423752 @default.
- W4283016104 cites W3008439211 @default.
- W4283016104 cites W3008531353 @default.
- W4283016104 cites W3010650493 @default.
- W4283016104 cites W3015756600 @default.
- W4283016104 cites W3027225766 @default.
- W4283016104 cites W3036453075 @default.
- W4283016104 cites W3036616251 @default.
- W4283016104 cites W3037587714 @default.
- W4283016104 cites W3084438775 @default.
- W4283016104 cites W3101825778 @default.
- W4283016104 cites W3104899156 @default.
- W4283016104 cites W3107597430 @default.
- W4283016104 cites W3120515478 @default.
- W4283016104 cites W3130754787 @default.
- W4283016104 cites W3134910218 @default.
- W4283016104 cites W3134919447 @default.
- W4283016104 cites W3142599962 @default.
- W4283016104 cites W3157928789 @default.
- W4283016104 cites W3159812033 @default.
- W4283016104 cites W3177480462 @default.
- W4283016104 cites W3211646616 @default.
- W4283016104 cites W4210427448 @default.
- W4283016104 cites W4213019902 @default.
- W4283016104 doi "https://doi.org/10.3390/rs14122874" @default.
- W4283016104 hasPublicationYear "2022" @default.
- W4283016104 type Work @default.
- W4283016104 citedByCount "4" @default.
- W4283016104 countsByYear W42830161042022 @default.
- W4283016104 countsByYear W42830161042023 @default.
- W4283016104 crossrefType "journal-article" @default.
- W4283016104 hasAuthorship W4283016104A5015689119 @default.
- W4283016104 hasAuthorship W4283016104A5017694608 @default.
- W4283016104 hasAuthorship W4283016104A5058689893 @default.
- W4283016104 hasBestOaLocation W42830161041 @default.
- W4283016104 hasConcept C108583219 @default.
- W4283016104 hasConcept C121332964 @default.
- W4283016104 hasConcept C142575187 @default.
- W4283016104 hasConcept C154945302 @default.
- W4283016104 hasConcept C162324750 @default.
- W4283016104 hasConcept C165801399 @default.
- W4283016104 hasConcept C203595873 @default.
- W4283016104 hasConcept C205649164 @default.
- W4283016104 hasConcept C2524010 @default.
- W4283016104 hasConcept C33923547 @default.
- W4283016104 hasConcept C39853841 @default.
- W4283016104 hasConcept C41008148 @default.
- W4283016104 hasConcept C50522688 @default.
- W4283016104 hasConcept C62520636 @default.
- W4283016104 hasConcept C62649853 @default.
- W4283016104 hasConcept C66322947 @default.
- W4283016104 hasConceptScore W4283016104C108583219 @default.
- W4283016104 hasConceptScore W4283016104C121332964 @default.
- W4283016104 hasConceptScore W4283016104C142575187 @default.
- W4283016104 hasConceptScore W4283016104C154945302 @default.
- W4283016104 hasConceptScore W4283016104C162324750 @default.
- W4283016104 hasConceptScore W4283016104C165801399 @default.
- W4283016104 hasConceptScore W4283016104C203595873 @default.
- W4283016104 hasConceptScore W4283016104C205649164 @default.
- W4283016104 hasConceptScore W4283016104C2524010 @default.
- W4283016104 hasConceptScore W4283016104C33923547 @default.
- W4283016104 hasConceptScore W4283016104C39853841 @default.
- W4283016104 hasConceptScore W4283016104C41008148 @default.
- W4283016104 hasConceptScore W4283016104C50522688 @default.
- W4283016104 hasConceptScore W4283016104C62520636 @default.