Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283018281> ?p ?o ?g. }
- W4283018281 endingPage "324" @default.
- W4283018281 startingPage "311" @default.
- W4283018281 abstract "In the digitization of energy systems, sensors and smart meters are increasingly being used to monitor production, operation and demand. Detection of anomalies based on smart meter data is crucial to identify potential risks and unusual events at an early stage, which can serve as a reference for timely initiation of appropriate actions and improving management. However, smart meter data from energy systems often lack labels and contain noise and various patterns without distinctively cyclical. Meanwhile, the vague definition of anomalies in different energy scenarios and highly complex temporal correlations pose a great challenge for anomaly detection. Many traditional unsupervised anomaly detection algorithms such as cluster-based or distance-based models are not robust to noise and not fully exploit the temporal dependency in a time series as well as other dependencies amongst multiple variables (sensors). This paper proposes an unsupervised anomaly detection method based on a Variational Recurrent Autoencoder with attention mechanism. with “dirty” data from smart meters, our method pre-detects missing values and global anomalies to shrink their contribution while training. This paper makes a quantitative comparison with the VAE-based baseline approach and four other unsupervised learning methods, demonstrating its effectiveness and superiority. This paper further validates the proposed method by a real case study of detecting the anomalies of water supply temperature from an industrial heating plant." @default.
- W4283018281 created "2022-06-18" @default.
- W4283018281 creator A5005271692 @default.
- W4283018281 creator A5015017142 @default.
- W4283018281 creator A5073574012 @default.
- W4283018281 creator A5084641090 @default.
- W4283018281 date "2022-01-01" @default.
- W4283018281 modified "2023-09-25" @default.
- W4283018281 title "Smart Meter Data Anomaly Detection Using Variational Recurrent Autoencoders with Attention" @default.
- W4283018281 cites W1530232915 @default.
- W4283018281 cites W1902237438 @default.
- W4283018281 cites W2019014808 @default.
- W4283018281 cites W2041184937 @default.
- W4283018281 cites W2046714212 @default.
- W4283018281 cites W2059112289 @default.
- W4283018281 cites W2064675550 @default.
- W4283018281 cites W2094502600 @default.
- W4283018281 cites W2112618476 @default.
- W4283018281 cites W2122646361 @default.
- W4283018281 cites W2140095548 @default.
- W4283018281 cites W2144182447 @default.
- W4283018281 cites W2165444651 @default.
- W4283018281 cites W2167152259 @default.
- W4283018281 cites W2480524399 @default.
- W4283018281 cites W2586023264 @default.
- W4283018281 cites W2616497172 @default.
- W4283018281 cites W2765811365 @default.
- W4283018281 cites W2780476542 @default.
- W4283018281 cites W2806590860 @default.
- W4283018281 cites W2892063632 @default.
- W4283018281 cites W2909960414 @default.
- W4283018281 cites W2912123998 @default.
- W4283018281 cites W2921391372 @default.
- W4283018281 cites W2950361482 @default.
- W4283018281 cites W2962736999 @default.
- W4283018281 cites W3008638899 @default.
- W4283018281 cites W3098957257 @default.
- W4283018281 cites W3101815533 @default.
- W4283018281 doi "https://doi.org/10.1007/978-3-031-10525-8_25" @default.
- W4283018281 hasPublicationYear "2022" @default.
- W4283018281 type Work @default.
- W4283018281 citedByCount "1" @default.
- W4283018281 countsByYear W42830182812023 @default.
- W4283018281 crossrefType "book-chapter" @default.
- W4283018281 hasAuthorship W4283018281A5005271692 @default.
- W4283018281 hasAuthorship W4283018281A5015017142 @default.
- W4283018281 hasAuthorship W4283018281A5073574012 @default.
- W4283018281 hasAuthorship W4283018281A5084641090 @default.
- W4283018281 hasBestOaLocation W42830182812 @default.
- W4283018281 hasConcept C101738243 @default.
- W4283018281 hasConcept C10558101 @default.
- W4283018281 hasConcept C108583219 @default.
- W4283018281 hasConcept C115961682 @default.
- W4283018281 hasConcept C119599485 @default.
- W4283018281 hasConcept C119857082 @default.
- W4283018281 hasConcept C121332964 @default.
- W4283018281 hasConcept C124101348 @default.
- W4283018281 hasConcept C127413603 @default.
- W4283018281 hasConcept C12997251 @default.
- W4283018281 hasConcept C153180895 @default.
- W4283018281 hasConcept C154945302 @default.
- W4283018281 hasConcept C165696696 @default.
- W4283018281 hasConcept C19768560 @default.
- W4283018281 hasConcept C26873012 @default.
- W4283018281 hasConcept C2779308522 @default.
- W4283018281 hasConcept C2779510800 @default.
- W4283018281 hasConcept C31972630 @default.
- W4283018281 hasConcept C38652104 @default.
- W4283018281 hasConcept C41008148 @default.
- W4283018281 hasConcept C739882 @default.
- W4283018281 hasConcept C99498987 @default.
- W4283018281 hasConceptScore W4283018281C101738243 @default.
- W4283018281 hasConceptScore W4283018281C10558101 @default.
- W4283018281 hasConceptScore W4283018281C108583219 @default.
- W4283018281 hasConceptScore W4283018281C115961682 @default.
- W4283018281 hasConceptScore W4283018281C119599485 @default.
- W4283018281 hasConceptScore W4283018281C119857082 @default.
- W4283018281 hasConceptScore W4283018281C121332964 @default.
- W4283018281 hasConceptScore W4283018281C124101348 @default.
- W4283018281 hasConceptScore W4283018281C127413603 @default.
- W4283018281 hasConceptScore W4283018281C12997251 @default.
- W4283018281 hasConceptScore W4283018281C153180895 @default.
- W4283018281 hasConceptScore W4283018281C154945302 @default.
- W4283018281 hasConceptScore W4283018281C165696696 @default.
- W4283018281 hasConceptScore W4283018281C19768560 @default.
- W4283018281 hasConceptScore W4283018281C26873012 @default.
- W4283018281 hasConceptScore W4283018281C2779308522 @default.
- W4283018281 hasConceptScore W4283018281C2779510800 @default.
- W4283018281 hasConceptScore W4283018281C31972630 @default.
- W4283018281 hasConceptScore W4283018281C38652104 @default.
- W4283018281 hasConceptScore W4283018281C41008148 @default.
- W4283018281 hasConceptScore W4283018281C739882 @default.
- W4283018281 hasConceptScore W4283018281C99498987 @default.
- W4283018281 hasLocation W42830182811 @default.
- W4283018281 hasLocation W42830182812 @default.
- W4283018281 hasOpenAccess W4283018281 @default.
- W4283018281 hasPrimaryLocation W42830182811 @default.
- W4283018281 hasRelatedWork W2669956259 @default.