Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283019452> ?p ?o ?g. }
- W4283019452 abstract "Cardiovascular diseases (CVD) are currently the leading cause of premature death worldwide. Model-based early detection of high-risk populations for CVD is the key to CVD prevention. Thus, this research aimed to use machine learning (ML) algorithms to establish a CVD prediction model based on routine physical examination indicators suitable for the Xinjiang rural population.The research cohort data collection was divided into two stages. The first stage involved a baseline survey from 2010 to 2012, with follow-up ending in December 2017. The second-phase baseline survey was conducted from September to December 2016, and follow-up ended in August 2021. A total of 12,692 participants (10,407 Uyghur and 2,285 Kazak) were included in the study. Screening predictors and establishing variable subsets were based on least absolute shrinkage and selection operator (Lasso) regression, logistic regression forward partial likelihood estimation (FLR), random forest (RF) feature importance, and RF variable importance. The selected subset of variables was compared with L1 regularized logistic regression (L1-LR), RF, support vector machine (SVM), and AdaBoost algorithm to establish a CVD prediction model suitable for this population. The incidence of CVD in this population was then analyzed.After 4.94 years of follow-up, a total of 1,176 people were diagnosed with CVD (cumulative incidence: 9.27%). In the comparison of discrimination and calibration, the prediction performance of the subset of variables selected based on FLR was better than that of other models. Combining the results of discrimination, calibration, and clinical validity, the prediction model based on L1-LR had the best prediction performance. Age, systolic blood pressure, low-density lipoprotein-L/high-density lipoproteins-C, triglyceride blood glucose index, body mass index, and body adiposity index were all important predictors of the onset of CVD in the Xinjiang rural population.In the Xinjiang rural population, the prediction model based on L1-LR had the best prediction performance." @default.
- W4283019452 created "2022-06-18" @default.
- W4283019452 creator A5003667469 @default.
- W4283019452 creator A5013908138 @default.
- W4283019452 creator A5018073672 @default.
- W4283019452 creator A5023751622 @default.
- W4283019452 creator A5046277098 @default.
- W4283019452 creator A5052932917 @default.
- W4283019452 creator A5058521863 @default.
- W4283019452 creator A5065693057 @default.
- W4283019452 creator A5069810652 @default.
- W4283019452 creator A5070975515 @default.
- W4283019452 date "2022-06-17" @default.
- W4283019452 modified "2023-10-05" @default.
- W4283019452 title "A Cardiovascular Disease Prediction Model Based on Routine Physical Examination Indicators Using Machine Learning Methods: A Cohort Study" @default.
- W4283019452 cites W1562953044 @default.
- W4283019452 cites W1602160603 @default.
- W4283019452 cites W1968969471 @default.
- W4283019452 cites W1971654961 @default.
- W4283019452 cites W1976716107 @default.
- W4283019452 cites W2015185375 @default.
- W4283019452 cites W2024728892 @default.
- W4283019452 cites W2031564429 @default.
- W4283019452 cites W2054861375 @default.
- W4283019452 cites W2089996629 @default.
- W4283019452 cites W2096849439 @default.
- W4283019452 cites W2112316706 @default.
- W4283019452 cites W2122613362 @default.
- W4283019452 cites W2148092884 @default.
- W4283019452 cites W2165884492 @default.
- W4283019452 cites W2168536722 @default.
- W4283019452 cites W2168630917 @default.
- W4283019452 cites W2217853646 @default.
- W4283019452 cites W2266995761 @default.
- W4283019452 cites W2402599050 @default.
- W4283019452 cites W2415169764 @default.
- W4283019452 cites W2496911238 @default.
- W4283019452 cites W2549885908 @default.
- W4283019452 cites W2614578122 @default.
- W4283019452 cites W2618596952 @default.
- W4283019452 cites W2664267452 @default.
- W4283019452 cites W2733294365 @default.
- W4283019452 cites W2743269518 @default.
- W4283019452 cites W2901035518 @default.
- W4283019452 cites W2911228607 @default.
- W4283019452 cites W2911964244 @default.
- W4283019452 cites W2913997948 @default.
- W4283019452 cites W2920828479 @default.
- W4283019452 cites W2921080115 @default.
- W4283019452 cites W2942696628 @default.
- W4283019452 cites W2997395189 @default.
- W4283019452 cites W3001764054 @default.
- W4283019452 cites W3004546326 @default.
- W4283019452 cites W3011484826 @default.
- W4283019452 cites W3012687466 @default.
- W4283019452 cites W3021842026 @default.
- W4283019452 cites W3031591161 @default.
- W4283019452 cites W3089401561 @default.
- W4283019452 cites W3089526279 @default.
- W4283019452 cites W3105224292 @default.
- W4283019452 cites W3110924662 @default.
- W4283019452 cites W3124830976 @default.
- W4283019452 cites W3168831527 @default.
- W4283019452 cites W3169302078 @default.
- W4283019452 cites W3194763340 @default.
- W4283019452 cites W4239510810 @default.
- W4283019452 cites W4293266078 @default.
- W4283019452 cites W4297966518 @default.
- W4283019452 doi "https://doi.org/10.3389/fcvm.2022.854287" @default.
- W4283019452 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35783868" @default.
- W4283019452 hasPublicationYear "2022" @default.
- W4283019452 type Work @default.
- W4283019452 citedByCount "9" @default.
- W4283019452 countsByYear W42830194522022 @default.
- W4283019452 countsByYear W42830194522023 @default.
- W4283019452 crossrefType "journal-article" @default.
- W4283019452 hasAuthorship W4283019452A5003667469 @default.
- W4283019452 hasAuthorship W4283019452A5013908138 @default.
- W4283019452 hasAuthorship W4283019452A5018073672 @default.
- W4283019452 hasAuthorship W4283019452A5023751622 @default.
- W4283019452 hasAuthorship W4283019452A5046277098 @default.
- W4283019452 hasAuthorship W4283019452A5052932917 @default.
- W4283019452 hasAuthorship W4283019452A5058521863 @default.
- W4283019452 hasAuthorship W4283019452A5065693057 @default.
- W4283019452 hasAuthorship W4283019452A5069810652 @default.
- W4283019452 hasAuthorship W4283019452A5070975515 @default.
- W4283019452 hasBestOaLocation W42830194521 @default.
- W4283019452 hasConcept C105795698 @default.
- W4283019452 hasConcept C119857082 @default.
- W4283019452 hasConcept C12267149 @default.
- W4283019452 hasConcept C126322002 @default.
- W4283019452 hasConcept C136764020 @default.
- W4283019452 hasConcept C141404830 @default.
- W4283019452 hasConcept C148483581 @default.
- W4283019452 hasConcept C151956035 @default.
- W4283019452 hasConcept C154945302 @default.
- W4283019452 hasConcept C165838908 @default.
- W4283019452 hasConcept C169258074 @default.
- W4283019452 hasConcept C2524010 @default.
- W4283019452 hasConcept C2908647359 @default.