Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283020005> ?p ?o ?g. }
- W4283020005 abstract "Fully automated machine learning (AutoML) for predictive modeling is becoming a reality, giving rise to a whole new field. We present the basic ideas and principles of Just Add Data Bio (JADBio), an AutoML platform applicable to the low-sample, high-dimensional omics data that arise in translational medicine and bioinformatics applications. In addition to predictive and diagnostic models ready for clinical use, JADBio focuses on knowledge discovery by performing feature selection and identifying the corresponding biosignatures, i.e., minimal-size subsets of biomarkers that are jointly predictive of the outcome or phenotype of interest. It also returns a palette of useful information for interpretation, clinical use of the models, and decision making. JADBio is qualitatively and quantitatively compared against Hyper-Parameter Optimization Machine Learning libraries. Results show that in typical omics dataset analysis, JADBio manages to identify signatures comprising of just a handful of features while maintaining competitive predictive performance and accurate out-of-sample performance estimation." @default.
- W4283020005 created "2022-06-18" @default.
- W4283020005 creator A5005690569 @default.
- W4283020005 creator A5016518691 @default.
- W4283020005 creator A5028222654 @default.
- W4283020005 creator A5028589163 @default.
- W4283020005 creator A5037918083 @default.
- W4283020005 creator A5050179686 @default.
- W4283020005 creator A5053310450 @default.
- W4283020005 creator A5055366392 @default.
- W4283020005 creator A5070582381 @default.
- W4283020005 date "2022-06-16" @default.
- W4283020005 modified "2023-10-01" @default.
- W4283020005 title "Just Add Data: automated predictive modeling for knowledge discovery and feature selection" @default.
- W4283020005 cites W1498800329 @default.
- W4283020005 cites W192715580 @default.
- W4283020005 cites W1960974681 @default.
- W4283020005 cites W1978414516 @default.
- W4283020005 cites W1978709058 @default.
- W4283020005 cites W1999687329 @default.
- W4283020005 cites W2056040742 @default.
- W4283020005 cites W2060320699 @default.
- W4283020005 cites W2081084507 @default.
- W4283020005 cites W2091947792 @default.
- W4283020005 cites W2097360283 @default.
- W4283020005 cites W2101870168 @default.
- W4283020005 cites W2102539288 @default.
- W4283020005 cites W2115358726 @default.
- W4283020005 cites W2118258530 @default.
- W4283020005 cites W2125847307 @default.
- W4283020005 cites W2130725058 @default.
- W4283020005 cites W2152239989 @default.
- W4283020005 cites W2153491803 @default.
- W4283020005 cites W2153635508 @default.
- W4283020005 cites W2167098291 @default.
- W4283020005 cites W2171589180 @default.
- W4283020005 cites W2177870565 @default.
- W4283020005 cites W2178425989 @default.
- W4283020005 cites W2338065342 @default.
- W4283020005 cites W2377027462 @default.
- W4283020005 cites W2521492299 @default.
- W4283020005 cites W2606715885 @default.
- W4283020005 cites W2621774768 @default.
- W4283020005 cites W2752305606 @default.
- W4283020005 cites W2759487333 @default.
- W4283020005 cites W2787894218 @default.
- W4283020005 cites W2792663180 @default.
- W4283020005 cites W2850540329 @default.
- W4283020005 cites W2890610471 @default.
- W4283020005 cites W2894636309 @default.
- W4283020005 cites W2901794234 @default.
- W4283020005 cites W2911211113 @default.
- W4283020005 cites W2911964244 @default.
- W4283020005 cites W2912436245 @default.
- W4283020005 cites W2918039280 @default.
- W4283020005 cites W2927453907 @default.
- W4283020005 cites W2952138298 @default.
- W4283020005 cites W2955219525 @default.
- W4283020005 cites W2960726518 @default.
- W4283020005 cites W2963686598 @default.
- W4283020005 cites W2982121021 @default.
- W4283020005 cites W2982282172 @default.
- W4283020005 cites W2997432446 @default.
- W4283020005 cites W2997950826 @default.
- W4283020005 cites W3004639570 @default.
- W4283020005 cites W3006913750 @default.
- W4283020005 cites W3010834195 @default.
- W4283020005 cites W3016747749 @default.
- W4283020005 cites W3030917289 @default.
- W4283020005 cites W3031631777 @default.
- W4283020005 cites W3087238889 @default.
- W4283020005 cites W3088972284 @default.
- W4283020005 cites W3095177285 @default.
- W4283020005 cites W3099478002 @default.
- W4283020005 cites W3102519500 @default.
- W4283020005 cites W3122206885 @default.
- W4283020005 cites W3126956147 @default.
- W4283020005 cites W3128011404 @default.
- W4283020005 cites W3130376580 @default.
- W4283020005 cites W3139099105 @default.
- W4283020005 cites W3140738340 @default.
- W4283020005 cites W3146378223 @default.
- W4283020005 cites W3157463093 @default.
- W4283020005 cites W3158764022 @default.
- W4283020005 cites W3164322227 @default.
- W4283020005 cites W3166698551 @default.
- W4283020005 cites W3185119559 @default.
- W4283020005 cites W3200967367 @default.
- W4283020005 cites W3213838697 @default.
- W4283020005 cites W4200026452 @default.
- W4283020005 cites W4234698323 @default.
- W4283020005 cites W4294199278 @default.
- W4283020005 cites W4294541781 @default.
- W4283020005 cites W4297957988 @default.
- W4283020005 doi "https://doi.org/10.1038/s41698-022-00274-8" @default.
- W4283020005 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35710826" @default.
- W4283020005 hasPublicationYear "2022" @default.
- W4283020005 type Work @default.
- W4283020005 citedByCount "16" @default.
- W4283020005 countsByYear W42830200052021 @default.