Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283021856> ?p ?o ?g. }
- W4283021856 endingPage "2204102" @default.
- W4283021856 startingPage "2204102" @default.
- W4283021856 abstract "A spiking neural network (SNN) inspired by the structure and principles of the human brain can significantly enhance the energy efficiency of artificial intelligence computing by overcoming the bottlenecks of the conventional von Neumann architecture with its massive parallelism and spike transmissions. The construction of artificial neurons is important for the hardware implementation of an SNN, which generates spike signals when enough synaptic signals are gathered. Because circuit-level artificial neurons with comparator and reset circuits require considerable hardware area, intensive efforts are devoted in recent years for building artificial neurons at the device level for better area efficiency. Furthermore, artificial sensory neuron devices, which perform neural processing and sensing concurrently, have recently been developed in order to reduce the hardware cost and energy consumption of traditional sensory systems through in-sensor computing. This review article surveys and benchmarks the recent progress of artificial neuron devices for neural processing and sensing. First, various artificial neuron devices are summarized, including single-transistor neurons (1T-neurons), memristor neurons, phase-change neurons, magnetic neurons, and ferroelectric neurons. Next, cointegration technologies with artificial synaptic devices and artificial sensory neurons for in-sensor computing are introduced. Finally, the challenges and prospects for developing artificial neuron devices are discussed." @default.
- W4283021856 created "2022-06-18" @default.
- W4283021856 creator A5027383868 @default.
- W4283021856 creator A5030152729 @default.
- W4283021856 creator A5051052797 @default.
- W4283021856 creator A5072937393 @default.
- W4283021856 creator A5090017113 @default.
- W4283021856 date "2022-06-16" @default.
- W4283021856 modified "2023-10-18" @default.
- W4283021856 title "A Review of Artificial Spiking Neuron Devices for Neural Processing and Sensing" @default.
- W4283021856 cites W1966025990 @default.
- W4283021856 cites W2012265686 @default.
- W4283021856 cites W2012722727 @default.
- W4283021856 cites W2015206113 @default.
- W4283021856 cites W2032832574 @default.
- W4283021856 cites W2043707274 @default.
- W4283021856 cites W2057085909 @default.
- W4283021856 cites W2132563832 @default.
- W4283021856 cites W2138913040 @default.
- W4283021856 cites W2156640153 @default.
- W4283021856 cites W2157239334 @default.
- W4283021856 cites W2162827630 @default.
- W4283021856 cites W2389556795 @default.
- W4283021856 cites W2519576310 @default.
- W4283021856 cites W2526202524 @default.
- W4283021856 cites W2549976854 @default.
- W4283021856 cites W2580767461 @default.
- W4283021856 cites W2582915745 @default.
- W4283021856 cites W2590692683 @default.
- W4283021856 cites W2750933427 @default.
- W4283021856 cites W2767721992 @default.
- W4283021856 cites W2771420577 @default.
- W4283021856 cites W2778935320 @default.
- W4283021856 cites W2781659948 @default.
- W4283021856 cites W2783170308 @default.
- W4283021856 cites W2783525259 @default.
- W4283021856 cites W2787189470 @default.
- W4283021856 cites W2792208628 @default.
- W4283021856 cites W2793979264 @default.
- W4283021856 cites W2799526921 @default.
- W4283021856 cites W2803163155 @default.
- W4283021856 cites W2807551379 @default.
- W4283021856 cites W2873419342 @default.
- W4283021856 cites W2883879633 @default.
- W4283021856 cites W2885334747 @default.
- W4283021856 cites W2907307881 @default.
- W4283021856 cites W2909240409 @default.
- W4283021856 cites W2916724483 @default.
- W4283021856 cites W2919115771 @default.
- W4283021856 cites W2922416786 @default.
- W4283021856 cites W2957921024 @default.
- W4283021856 cites W2960778947 @default.
- W4283021856 cites W2963235895 @default.
- W4283021856 cites W2981328134 @default.
- W4283021856 cites W2985832844 @default.
- W4283021856 cites W2992923503 @default.
- W4283021856 cites W2996276847 @default.
- W4283021856 cites W2996585853 @default.
- W4283021856 cites W3000505821 @default.
- W4283021856 cites W3004953473 @default.
- W4283021856 cites W3007324581 @default.
- W4283021856 cites W3009994855 @default.
- W4283021856 cites W3034236800 @default.
- W4283021856 cites W3039560462 @default.
- W4283021856 cites W3047886418 @default.
- W4283021856 cites W3092835125 @default.
- W4283021856 cites W3104775050 @default.
- W4283021856 cites W3105982350 @default.
- W4283021856 cites W3107838469 @default.
- W4283021856 cites W3109980224 @default.
- W4283021856 cites W3117080414 @default.
- W4283021856 cites W3122925538 @default.
- W4283021856 cites W3135901939 @default.
- W4283021856 cites W3140018342 @default.
- W4283021856 cites W3162339555 @default.
- W4283021856 cites W3171804290 @default.
- W4283021856 cites W3185711678 @default.
- W4283021856 cites W3199086056 @default.
- W4283021856 cites W3200680790 @default.
- W4283021856 cites W3203182249 @default.
- W4283021856 cites W3203418613 @default.
- W4283021856 cites W4205323638 @default.
- W4283021856 cites W4205781070 @default.
- W4283021856 cites W4206205018 @default.
- W4283021856 cites W4206647240 @default.
- W4283021856 doi "https://doi.org/10.1002/adfm.202204102" @default.
- W4283021856 hasPublicationYear "2022" @default.
- W4283021856 type Work @default.
- W4283021856 citedByCount "29" @default.
- W4283021856 countsByYear W42830218562022 @default.
- W4283021856 countsByYear W42830218562023 @default.
- W4283021856 crossrefType "journal-article" @default.
- W4283021856 hasAuthorship W4283021856A5027383868 @default.
- W4283021856 hasAuthorship W4283021856A5030152729 @default.
- W4283021856 hasAuthorship W4283021856A5051052797 @default.
- W4283021856 hasAuthorship W4283021856A5072937393 @default.
- W4283021856 hasAuthorship W4283021856A5090017113 @default.
- W4283021856 hasConcept C111919701 @default.