Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283024767> ?p ?o ?g. }
- W4283024767 endingPage "113531" @default.
- W4283024767 startingPage "113531" @default.
- W4283024767 abstract "Property prediction models have been developed for several decades with varying degrees of performance and complexity, from the group contribution-based methods to molecular simulations-based methods. An interesting issue in this area is finding an appropriate representation of molecules inherently suited for the property modeling problem. Here, we propose Grammar2vec, a SMILES grammar-based framework for generating dense, numeric molecular representations. Grammar2vec embeds molecular structural information contained in the grammar rules underlying SMILES string representations of molecules. We use Grammar2vec representations to build machine learning-based models for estimating normal boiling point (Tb) and critical temperature (Tc) and benchmark their performance against the popularly used group contribution (GC)-based methods. To ensure interpretability of the developed ML model, we perform a Shapley values-based analysis to estimate feature importance and simplify (or prune) the trained model." @default.
- W4283024767 created "2022-06-18" @default.
- W4283024767 creator A5028472704 @default.
- W4283024767 creator A5029344874 @default.
- W4283024767 creator A5050679262 @default.
- W4283024767 creator A5057712460 @default.
- W4283024767 date "2022-10-01" @default.
- W4283024767 modified "2023-10-16" @default.
- W4283024767 title "Hybrid, Interpretable Machine Learning for Thermodynamic Property Estimation using Grammar2vec for Molecular Representation" @default.
- W4283024767 cites W1975147762 @default.
- W4283024767 cites W1979275139 @default.
- W4283024767 cites W1988037271 @default.
- W4283024767 cites W1991629012 @default.
- W4283024767 cites W1995875735 @default.
- W4283024767 cites W2001101330 @default.
- W4283024767 cites W2016613469 @default.
- W4283024767 cites W2040713190 @default.
- W4283024767 cites W2047909810 @default.
- W4283024767 cites W2056139823 @default.
- W4283024767 cites W2081936482 @default.
- W4283024767 cites W2090255136 @default.
- W4283024767 cites W2121571028 @default.
- W4283024767 cites W2151554456 @default.
- W4283024767 cites W2163922914 @default.
- W4283024767 cites W2313053121 @default.
- W4283024767 cites W2324964582 @default.
- W4283024767 cites W2777416523 @default.
- W4283024767 cites W2792490750 @default.
- W4283024767 cites W2889880422 @default.
- W4283024767 cites W2947764583 @default.
- W4283024767 cites W2948020893 @default.
- W4283024767 cites W2966357564 @default.
- W4283024767 cites W2971267910 @default.
- W4283024767 cites W3022298391 @default.
- W4283024767 cites W3104850868 @default.
- W4283024767 cites W3118598712 @default.
- W4283024767 cites W3122158565 @default.
- W4283024767 cites W3127107417 @default.
- W4283024767 cites W3138148883 @default.
- W4283024767 cites W3201624628 @default.
- W4283024767 cites W3215885522 @default.
- W4283024767 doi "https://doi.org/10.1016/j.fluid.2022.113531" @default.
- W4283024767 hasPublicationYear "2022" @default.
- W4283024767 type Work @default.
- W4283024767 citedByCount "12" @default.
- W4283024767 countsByYear W42830247672022 @default.
- W4283024767 countsByYear W42830247672023 @default.
- W4283024767 crossrefType "journal-article" @default.
- W4283024767 hasAuthorship W4283024767A5028472704 @default.
- W4283024767 hasAuthorship W4283024767A5029344874 @default.
- W4283024767 hasAuthorship W4283024767A5050679262 @default.
- W4283024767 hasAuthorship W4283024767A5057712460 @default.
- W4283024767 hasBestOaLocation W42830247671 @default.
- W4283024767 hasConcept C111472728 @default.
- W4283024767 hasConcept C119857082 @default.
- W4283024767 hasConcept C13280743 @default.
- W4283024767 hasConcept C138885662 @default.
- W4283024767 hasConcept C154945302 @default.
- W4283024767 hasConcept C157486923 @default.
- W4283024767 hasConcept C17744445 @default.
- W4283024767 hasConcept C185592680 @default.
- W4283024767 hasConcept C185798385 @default.
- W4283024767 hasConcept C189950617 @default.
- W4283024767 hasConcept C199539241 @default.
- W4283024767 hasConcept C205649164 @default.
- W4283024767 hasConcept C2524010 @default.
- W4283024767 hasConcept C26022165 @default.
- W4283024767 hasConcept C2776359362 @default.
- W4283024767 hasConcept C2776401178 @default.
- W4283024767 hasConcept C2781067378 @default.
- W4283024767 hasConcept C28719098 @default.
- W4283024767 hasConcept C33923547 @default.
- W4283024767 hasConcept C37914503 @default.
- W4283024767 hasConcept C41008148 @default.
- W4283024767 hasConcept C41895202 @default.
- W4283024767 hasConcept C80444323 @default.
- W4283024767 hasConcept C94625758 @default.
- W4283024767 hasConceptScore W4283024767C111472728 @default.
- W4283024767 hasConceptScore W4283024767C119857082 @default.
- W4283024767 hasConceptScore W4283024767C13280743 @default.
- W4283024767 hasConceptScore W4283024767C138885662 @default.
- W4283024767 hasConceptScore W4283024767C154945302 @default.
- W4283024767 hasConceptScore W4283024767C157486923 @default.
- W4283024767 hasConceptScore W4283024767C17744445 @default.
- W4283024767 hasConceptScore W4283024767C185592680 @default.
- W4283024767 hasConceptScore W4283024767C185798385 @default.
- W4283024767 hasConceptScore W4283024767C189950617 @default.
- W4283024767 hasConceptScore W4283024767C199539241 @default.
- W4283024767 hasConceptScore W4283024767C205649164 @default.
- W4283024767 hasConceptScore W4283024767C2524010 @default.
- W4283024767 hasConceptScore W4283024767C26022165 @default.
- W4283024767 hasConceptScore W4283024767C2776359362 @default.
- W4283024767 hasConceptScore W4283024767C2776401178 @default.
- W4283024767 hasConceptScore W4283024767C2781067378 @default.
- W4283024767 hasConceptScore W4283024767C28719098 @default.
- W4283024767 hasConceptScore W4283024767C33923547 @default.
- W4283024767 hasConceptScore W4283024767C37914503 @default.
- W4283024767 hasConceptScore W4283024767C41008148 @default.