Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283025351> ?p ?o ?g. }
- W4283025351 endingPage "834" @default.
- W4283025351 startingPage "826" @default.
- W4283025351 abstract "Coronavirus disease-19 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is currently a major cause of intensive care unit (ICU) admissions globally. The role of machine learning in the ICU is evolving but currently limited to diagnostic and prognostic values. A decision tree (DT) algorithm is a simple and intuitive machine learning method that provides sequential nonlinear analysis of variables. It is simple and might be a valuable tool for bedside physicians during COVID-19 to predict ICU outcomes and help in critical decision-making like end-of-life decisions and bed allocation in the event of limited ICU bed capacities. Herein, we utilized a machine learning DT algorithm to describe the association of a predefined set of variables and 28-day ICU outcome in adult COVID-19 patients admitted to the ICU. We highlight the value of utilizing a machine learning DT algorithm in the ICU at the time of a COVID-19 pandemic.This was a prospective and multicenter cohort study involving 14 hospitals in Saudi Arabia. We included critically ill COVID-19 patients admitted to the ICU between March 1, 2020, and October 31, 2020. The predictors of 28-day ICU mortality were identified using two predictive models: conventional logistic regression and DT analyses.There were 1468 critically ill COVID-19 patients included in the study. The 28-day ICU mortality was 540 (36.8 %), and the 90-day mortality was 600 (40.9 %). The DT algorithm identified five variables that were integrated into the algorithm to predict 28-day ICU outcomes: need for intubation, need for vasopressors, age, gender, and PaO2/FiO2 ratio.DT is a simple tool that might be utilized in the ICU to identify critically ill COVID-19 patients who are at high risk of 28-day ICU mortality. However, further studies and external validation are still required." @default.
- W4283025351 created "2022-06-18" @default.
- W4283025351 creator A5002593851 @default.
- W4283025351 creator A5007130210 @default.
- W4283025351 creator A5011825185 @default.
- W4283025351 creator A5012744558 @default.
- W4283025351 creator A5015197141 @default.
- W4283025351 creator A5017186555 @default.
- W4283025351 creator A5020157030 @default.
- W4283025351 creator A5021200051 @default.
- W4283025351 creator A5026613864 @default.
- W4283025351 creator A5028196861 @default.
- W4283025351 creator A5028797215 @default.
- W4283025351 creator A5031318889 @default.
- W4283025351 creator A5037410253 @default.
- W4283025351 creator A5040301904 @default.
- W4283025351 creator A5042021657 @default.
- W4283025351 creator A5052596471 @default.
- W4283025351 creator A5055239168 @default.
- W4283025351 creator A5074502067 @default.
- W4283025351 creator A5076803519 @default.
- W4283025351 creator A5079361231 @default.
- W4283025351 creator A5088607819 @default.
- W4283025351 creator A5090741962 @default.
- W4283025351 date "2022-07-01" @default.
- W4283025351 modified "2023-10-16" @default.
- W4283025351 title "Machine learning decision tree algorithm role for predicting mortality in critically ill adult COVID-19 patients admitted to the ICU" @default.
- W4283025351 cites W1647645866 @default.
- W4283025351 cites W1898928487 @default.
- W4283025351 cites W1983699796 @default.
- W4283025351 cites W2008017047 @default.
- W4283025351 cites W2012775041 @default.
- W4283025351 cites W2021100122 @default.
- W4283025351 cites W2049847728 @default.
- W4283025351 cites W2170379523 @default.
- W4283025351 cites W2408866005 @default.
- W4283025351 cites W2755012395 @default.
- W4283025351 cites W2783691393 @default.
- W4283025351 cites W2909729347 @default.
- W4283025351 cites W2913584983 @default.
- W4283025351 cites W2919555334 @default.
- W4283025351 cites W3001897055 @default.
- W4283025351 cites W3012054129 @default.
- W4283025351 cites W3012320055 @default.
- W4283025351 cites W3017497838 @default.
- W4283025351 cites W3023997891 @default.
- W4283025351 cites W3028603051 @default.
- W4283025351 cites W3031861311 @default.
- W4283025351 cites W3035161663 @default.
- W4283025351 cites W3036409273 @default.
- W4283025351 cites W3038199690 @default.
- W4283025351 cites W3046629770 @default.
- W4283025351 cites W3047144258 @default.
- W4283025351 cites W3082012811 @default.
- W4283025351 cites W3087989375 @default.
- W4283025351 cites W3120105983 @default.
- W4283025351 cites W3125797720 @default.
- W4283025351 cites W3130328637 @default.
- W4283025351 cites W3152711969 @default.
- W4283025351 cites W3155205455 @default.
- W4283025351 cites W3160337168 @default.
- W4283025351 cites W3162199380 @default.
- W4283025351 cites W3176943905 @default.
- W4283025351 cites W3189819328 @default.
- W4283025351 cites W3191714445 @default.
- W4283025351 cites W3199334704 @default.
- W4283025351 cites W4206967190 @default.
- W4283025351 doi "https://doi.org/10.1016/j.jiph.2022.06.008" @default.
- W4283025351 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35759808" @default.
- W4283025351 hasPublicationYear "2022" @default.
- W4283025351 type Work @default.
- W4283025351 citedByCount "21" @default.
- W4283025351 countsByYear W42830253512022 @default.
- W4283025351 countsByYear W42830253512023 @default.
- W4283025351 crossrefType "journal-article" @default.
- W4283025351 hasAuthorship W4283025351A5002593851 @default.
- W4283025351 hasAuthorship W4283025351A5007130210 @default.
- W4283025351 hasAuthorship W4283025351A5011825185 @default.
- W4283025351 hasAuthorship W4283025351A5012744558 @default.
- W4283025351 hasAuthorship W4283025351A5015197141 @default.
- W4283025351 hasAuthorship W4283025351A5017186555 @default.
- W4283025351 hasAuthorship W4283025351A5020157030 @default.
- W4283025351 hasAuthorship W4283025351A5021200051 @default.
- W4283025351 hasAuthorship W4283025351A5026613864 @default.
- W4283025351 hasAuthorship W4283025351A5028196861 @default.
- W4283025351 hasAuthorship W4283025351A5028797215 @default.
- W4283025351 hasAuthorship W4283025351A5031318889 @default.
- W4283025351 hasAuthorship W4283025351A5037410253 @default.
- W4283025351 hasAuthorship W4283025351A5040301904 @default.
- W4283025351 hasAuthorship W4283025351A5042021657 @default.
- W4283025351 hasAuthorship W4283025351A5052596471 @default.
- W4283025351 hasAuthorship W4283025351A5055239168 @default.
- W4283025351 hasAuthorship W4283025351A5074502067 @default.
- W4283025351 hasAuthorship W4283025351A5076803519 @default.
- W4283025351 hasAuthorship W4283025351A5079361231 @default.
- W4283025351 hasAuthorship W4283025351A5088607819 @default.
- W4283025351 hasAuthorship W4283025351A5090741962 @default.
- W4283025351 hasBestOaLocation W42830253511 @default.