Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283025660> ?p ?o ?g. }
- W4283025660 endingPage "1438" @default.
- W4283025660 startingPage "1408" @default.
- W4283025660 abstract "Optimization problems not only become more and more ubiquitous in various fields, but also become more and more difficult to optimize nowadays, which seriously challenge the effectiveness of existing optimizers like different evolution (DE). To effectively solve this kind of problems, this paper proposes a random neighbor elite guided differential evolution (RNEGDE) algorithm. Specifically, to let individuals explore and exploit the solution space properly, a novel random neighbor elite guided mutation strategy named “DE/current-to-rnbest/1” is first proposed to mutate individuals. In this mutation strategy, several individuals randomly selected from the population for each individual to be updated along with the individual itself form a neighbor region, and then the best one in such a region is adopted as the guiding exemplar to mutate the individual. Due to the random selection of neighbors and the directional guidance of elites, this strategy is expected to direct individuals to promising areas fast without serious loss of diversity. Notably, it is found that two popular mutation strategies, namely “DE/current-to-best/1” and “DE/current-to-pbest/1”, are two special cases of the proposed “DE/current-to-rnbest/1”. Further, to alleviate the sensitivity of the proposed algorithm to the involved parameters, this paper utilizes the Gaussian distribution and the Cauchy distribution to adaptively generate parameter values for each individual with the mean value of the Gaussian distribution and the position value of the Cauchy distribution adaptively adjusted based on the evolutionary information of the population. With the above two techniques, the proposed algorithm is expected to effectively search the solution space. At last, extensive experiments conducted on one widely used benchmark function set with three different dimension sizes demonstrate that the proposed algorithm achieves highly competitive or even much better performance than several compared state-of-the-art peer methods." @default.
- W4283025660 created "2022-06-18" @default.
- W4283025660 creator A5000320630 @default.
- W4283025660 creator A5016231511 @default.
- W4283025660 creator A5024179677 @default.
- W4283025660 creator A5068089141 @default.
- W4283025660 creator A5071672663 @default.
- W4283025660 creator A5073844959 @default.
- W4283025660 date "2022-08-01" @default.
- W4283025660 modified "2023-10-16" @default.
- W4283025660 title "Random neighbor elite guided differential evolution for global numerical optimization" @default.
- W4283025660 cites W1595159159 @default.
- W4283025660 cites W1968005908 @default.
- W4283025660 cites W1970354386 @default.
- W4283025660 cites W1973857147 @default.
- W4283025660 cites W2002280630 @default.
- W4283025660 cites W2016114852 @default.
- W4283025660 cites W2081710833 @default.
- W4283025660 cites W2088617839 @default.
- W4283025660 cites W2117250519 @default.
- W4283025660 cites W2125332715 @default.
- W4283025660 cites W2134285040 @default.
- W4283025660 cites W2137340504 @default.
- W4283025660 cites W2153260109 @default.
- W4283025660 cites W2155529731 @default.
- W4283025660 cites W2163845190 @default.
- W4283025660 cites W2167287869 @default.
- W4283025660 cites W2285034650 @default.
- W4283025660 cites W2588408640 @default.
- W4283025660 cites W2593807586 @default.
- W4283025660 cites W2887471996 @default.
- W4283025660 cites W2912848192 @default.
- W4283025660 cites W2934302500 @default.
- W4283025660 cites W3088041907 @default.
- W4283025660 cites W3106873793 @default.
- W4283025660 cites W3109587892 @default.
- W4283025660 cites W3137695103 @default.
- W4283025660 cites W3159271217 @default.
- W4283025660 cites W3190343043 @default.
- W4283025660 cites W3192928480 @default.
- W4283025660 cites W3206920343 @default.
- W4283025660 cites W4205921932 @default.
- W4283025660 cites W4280545054 @default.
- W4283025660 doi "https://doi.org/10.1016/j.ins.2022.06.029" @default.
- W4283025660 hasPublicationYear "2022" @default.
- W4283025660 type Work @default.
- W4283025660 citedByCount "18" @default.
- W4283025660 countsByYear W42830256602022 @default.
- W4283025660 countsByYear W42830256602023 @default.
- W4283025660 crossrefType "journal-article" @default.
- W4283025660 hasAuthorship W4283025660A5000320630 @default.
- W4283025660 hasAuthorship W4283025660A5016231511 @default.
- W4283025660 hasAuthorship W4283025660A5024179677 @default.
- W4283025660 hasAuthorship W4283025660A5068089141 @default.
- W4283025660 hasAuthorship W4283025660A5071672663 @default.
- W4283025660 hasAuthorship W4283025660A5073844959 @default.
- W4283025660 hasConcept C104317684 @default.
- W4283025660 hasConcept C105795698 @default.
- W4283025660 hasConcept C11413529 @default.
- W4283025660 hasConcept C121332964 @default.
- W4283025660 hasConcept C126255220 @default.
- W4283025660 hasConcept C144024400 @default.
- W4283025660 hasConcept C149923435 @default.
- W4283025660 hasConcept C159149176 @default.
- W4283025660 hasConcept C163716315 @default.
- W4283025660 hasConcept C185592680 @default.
- W4283025660 hasConcept C2908647359 @default.
- W4283025660 hasConcept C33923547 @default.
- W4283025660 hasConcept C41008148 @default.
- W4283025660 hasConcept C49344536 @default.
- W4283025660 hasConcept C501734568 @default.
- W4283025660 hasConcept C55493867 @default.
- W4283025660 hasConcept C62520636 @default.
- W4283025660 hasConcept C74750220 @default.
- W4283025660 hasConceptScore W4283025660C104317684 @default.
- W4283025660 hasConceptScore W4283025660C105795698 @default.
- W4283025660 hasConceptScore W4283025660C11413529 @default.
- W4283025660 hasConceptScore W4283025660C121332964 @default.
- W4283025660 hasConceptScore W4283025660C126255220 @default.
- W4283025660 hasConceptScore W4283025660C144024400 @default.
- W4283025660 hasConceptScore W4283025660C149923435 @default.
- W4283025660 hasConceptScore W4283025660C159149176 @default.
- W4283025660 hasConceptScore W4283025660C163716315 @default.
- W4283025660 hasConceptScore W4283025660C185592680 @default.
- W4283025660 hasConceptScore W4283025660C2908647359 @default.
- W4283025660 hasConceptScore W4283025660C33923547 @default.
- W4283025660 hasConceptScore W4283025660C41008148 @default.
- W4283025660 hasConceptScore W4283025660C49344536 @default.
- W4283025660 hasConceptScore W4283025660C501734568 @default.
- W4283025660 hasConceptScore W4283025660C55493867 @default.
- W4283025660 hasConceptScore W4283025660C62520636 @default.
- W4283025660 hasConceptScore W4283025660C74750220 @default.
- W4283025660 hasFunder F4320321001 @default.
- W4283025660 hasFunder F4320322120 @default.
- W4283025660 hasFunder F4320322769 @default.
- W4283025660 hasFunder F4320324849 @default.
- W4283025660 hasFunder F4320335440 @default.
- W4283025660 hasFunder F4320335774 @default.