Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283026012> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4283026012 endingPage "119388" @default.
- W4283026012 startingPage "119388" @default.
- W4283026012 abstract "With the increase in renewable energy penetration, the impact of uncertain factors on the efficient operation of multi-energy microgrids (MEMGs) is becoming more and more prominent. Considering the source-load uncertainties of MEMGs, a two-stage stochastic optimization approach based on scenario analysis is proposed in this paper. First, mixed distribution and conditional distribution were used to fit the forecast errors of wind power and multiple loads respectively, so as to provide basic data for scenario generation. Then, an improved K-means clustering algorithm based on relative entropy was used for scenario reduction. This algorithm ensured the scenario reduction speed while maintaining the probability distribution characteristics of the generated scenarios. Taking the day-ahead forecast and scenario analysis results of the sources and loads as inputs, a two-stage stochastic optimization model of MEMG based on random fluctuation stabilization was constructed. In the first stage, equipment outputs are formulated by deterministic optimization based on day-ahead forecasts. In the second stage, the forecast errors are regarded as fluctuations and combined with scenarized source and load variables, energy storage equipment are given priority to stabilize scenario fluctuations. At the same time, based on the conditional value at risk (CVaR), the outputs of energy supply and storage equipment can be flexibly adjusted under different risk preferences to realize the efficient operation of MEMG. The example simulation showed that the proposed stochastic optimization approach make better use of energy storage equipment, make scheduling plans according to different risk preferences to deal with uncertainty flexibly. • A mixed distribution is proposed to fit distribution of wind power forecast errors. • A conditional distribution model is proposed to fit forecast errors of multi-loads. • An improved K-means clustering algorithm for scenario reduction is proposed. • A two-stage stochastic optimization approach is proposed to stabilize fluctuations." @default.
- W4283026012 created "2022-06-18" @default.
- W4283026012 creator A5006622111 @default.
- W4283026012 creator A5013825847 @default.
- W4283026012 creator A5020671839 @default.
- W4283026012 creator A5031234943 @default.
- W4283026012 creator A5071403272 @default.
- W4283026012 creator A5074637852 @default.
- W4283026012 date "2022-09-01" @default.
- W4283026012 modified "2023-10-16" @default.
- W4283026012 title "A scenario-based two-stage stochastic optimization approach for multi-energy microgrids" @default.
- W4283026012 cites W2009012905 @default.
- W4283026012 cites W2012062191 @default.
- W4283026012 cites W2043943965 @default.
- W4283026012 cites W2057090126 @default.
- W4283026012 cites W2060013459 @default.
- W4283026012 cites W2076410045 @default.
- W4283026012 cites W2750914541 @default.
- W4283026012 cites W2765088069 @default.
- W4283026012 cites W2778109384 @default.
- W4283026012 cites W2793188855 @default.
- W4283026012 cites W2800201444 @default.
- W4283026012 cites W2904810330 @default.
- W4283026012 cites W2908011737 @default.
- W4283026012 cites W2909413065 @default.
- W4283026012 cites W2969279236 @default.
- W4283026012 cites W2972103376 @default.
- W4283026012 cites W2988862711 @default.
- W4283026012 cites W2999988112 @default.
- W4283026012 cites W3006325104 @default.
- W4283026012 cites W3006721701 @default.
- W4283026012 cites W3009018545 @default.
- W4283026012 cites W3044099695 @default.
- W4283026012 cites W3047781246 @default.
- W4283026012 doi "https://doi.org/10.1016/j.apenergy.2022.119388" @default.
- W4283026012 hasPublicationYear "2022" @default.
- W4283026012 type Work @default.
- W4283026012 citedByCount "15" @default.
- W4283026012 countsByYear W42830260122022 @default.
- W4283026012 countsByYear W42830260122023 @default.
- W4283026012 crossrefType "journal-article" @default.
- W4283026012 hasAuthorship W4283026012A5006622111 @default.
- W4283026012 hasAuthorship W4283026012A5013825847 @default.
- W4283026012 hasAuthorship W4283026012A5020671839 @default.
- W4283026012 hasAuthorship W4283026012A5031234943 @default.
- W4283026012 hasAuthorship W4283026012A5071403272 @default.
- W4283026012 hasAuthorship W4283026012A5074637852 @default.
- W4283026012 hasConcept C105795698 @default.
- W4283026012 hasConcept C126255220 @default.
- W4283026012 hasConcept C127313418 @default.
- W4283026012 hasConcept C127413603 @default.
- W4283026012 hasConcept C146357865 @default.
- W4283026012 hasConcept C151730666 @default.
- W4283026012 hasConcept C186370098 @default.
- W4283026012 hasConcept C194387892 @default.
- W4283026012 hasConcept C33923547 @default.
- W4283026012 hasConcept C41008148 @default.
- W4283026012 hasConcept C42475967 @default.
- W4283026012 hasConceptScore W4283026012C105795698 @default.
- W4283026012 hasConceptScore W4283026012C126255220 @default.
- W4283026012 hasConceptScore W4283026012C127313418 @default.
- W4283026012 hasConceptScore W4283026012C127413603 @default.
- W4283026012 hasConceptScore W4283026012C146357865 @default.
- W4283026012 hasConceptScore W4283026012C151730666 @default.
- W4283026012 hasConceptScore W4283026012C186370098 @default.
- W4283026012 hasConceptScore W4283026012C194387892 @default.
- W4283026012 hasConceptScore W4283026012C33923547 @default.
- W4283026012 hasConceptScore W4283026012C41008148 @default.
- W4283026012 hasConceptScore W4283026012C42475967 @default.
- W4283026012 hasFunder F4320310075 @default.
- W4283026012 hasFunder F4320313895 @default.
- W4283026012 hasFunder F4320321001 @default.
- W4283026012 hasFunder F4320324174 @default.
- W4283026012 hasLocation W42830260121 @default.
- W4283026012 hasOpenAccess W4283026012 @default.
- W4283026012 hasPrimaryLocation W42830260121 @default.
- W4283026012 hasRelatedWork W1606227631 @default.
- W4283026012 hasRelatedWork W1978379809 @default.
- W4283026012 hasRelatedWork W2062144119 @default.
- W4283026012 hasRelatedWork W2088487002 @default.
- W4283026012 hasRelatedWork W2101979813 @default.
- W4283026012 hasRelatedWork W2160374150 @default.
- W4283026012 hasRelatedWork W2490800486 @default.
- W4283026012 hasRelatedWork W3089040801 @default.
- W4283026012 hasRelatedWork W4211155097 @default.
- W4283026012 hasRelatedWork W4385342095 @default.
- W4283026012 hasVolume "322" @default.
- W4283026012 isParatext "false" @default.
- W4283026012 isRetracted "false" @default.
- W4283026012 workType "article" @default.