Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283030794> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4283030794 abstract "In new generation networks, 5G and 6G networks, intelligent mechanisms based on artificial intelligence algorithms are playing a relevant role in the performance improvement at different network levels. In 5G networks, different techniques are used, such as MIMO systems, and its network infrastructure is utilized by diverse services, for instance, vehicular communications. Thus, the description and the tracing of a communication scenario needs a large volume of data. Because of the difficulty to implement actual 5G networks, there is a lack of datasets containing complete 5G scenarios, the data is not enough or contain imbalanced classes to properly train machine learning (ML) algorithms. In this context, we propose a method to increase the amount of data to improve the machine learning performance of some classification models, specifically Random Forest, Multilayer Perceptron, and k-Nearest Neighbors. In the experimental results of the test phase, considering the inclusion of synthetic data, Random Forest, Multilayer Perceptron and k-Nearest Neighbors reached macro F1 scores of 0.9341, 0.9241 and 0.9456, respectively, which are superior to the results obtained when training with the original data only." @default.
- W4283030794 created "2022-06-18" @default.
- W4283030794 creator A5021252790 @default.
- W4283030794 creator A5056786431 @default.
- W4283030794 creator A5063050171 @default.
- W4283030794 creator A5068813665 @default.
- W4283030794 creator A5070193208 @default.
- W4283030794 creator A5078186374 @default.
- W4283030794 date "2022-05-24" @default.
- W4283030794 modified "2023-10-14" @default.
- W4283030794 title "Selection of Beamforming in 5G MIMO scenarios using Machine Learning approach" @default.
- W4283030794 cites W1993813830 @default.
- W4283030794 cites W2045764789 @default.
- W4283030794 cites W2132791018 @default.
- W4283030794 cites W2195693430 @default.
- W4283030794 cites W2565181530 @default.
- W4283030794 cites W2789503661 @default.
- W4283030794 cites W2795097063 @default.
- W4283030794 cites W2898434483 @default.
- W4283030794 cites W2963537617 @default.
- W4283030794 cites W3133997498 @default.
- W4283030794 cites W4244238212 @default.
- W4283030794 doi "https://doi.org/10.1109/ecti-con54298.2022.9795421" @default.
- W4283030794 hasPublicationYear "2022" @default.
- W4283030794 type Work @default.
- W4283030794 citedByCount "2" @default.
- W4283030794 countsByYear W42830307942022 @default.
- W4283030794 countsByYear W42830307942023 @default.
- W4283030794 crossrefType "proceedings-article" @default.
- W4283030794 hasAuthorship W4283030794A5021252790 @default.
- W4283030794 hasAuthorship W4283030794A5056786431 @default.
- W4283030794 hasAuthorship W4283030794A5063050171 @default.
- W4283030794 hasAuthorship W4283030794A5068813665 @default.
- W4283030794 hasAuthorship W4283030794A5070193208 @default.
- W4283030794 hasAuthorship W4283030794A5078186374 @default.
- W4283030794 hasConcept C119857082 @default.
- W4283030794 hasConcept C124101348 @default.
- W4283030794 hasConcept C151730666 @default.
- W4283030794 hasConcept C154945302 @default.
- W4283030794 hasConcept C169258074 @default.
- W4283030794 hasConcept C179717631 @default.
- W4283030794 hasConcept C207987634 @default.
- W4283030794 hasConcept C2779343474 @default.
- W4283030794 hasConcept C41008148 @default.
- W4283030794 hasConcept C50644808 @default.
- W4283030794 hasConcept C54197355 @default.
- W4283030794 hasConcept C60908668 @default.
- W4283030794 hasConcept C76155785 @default.
- W4283030794 hasConcept C86803240 @default.
- W4283030794 hasConceptScore W4283030794C119857082 @default.
- W4283030794 hasConceptScore W4283030794C124101348 @default.
- W4283030794 hasConceptScore W4283030794C151730666 @default.
- W4283030794 hasConceptScore W4283030794C154945302 @default.
- W4283030794 hasConceptScore W4283030794C169258074 @default.
- W4283030794 hasConceptScore W4283030794C179717631 @default.
- W4283030794 hasConceptScore W4283030794C207987634 @default.
- W4283030794 hasConceptScore W4283030794C2779343474 @default.
- W4283030794 hasConceptScore W4283030794C41008148 @default.
- W4283030794 hasConceptScore W4283030794C50644808 @default.
- W4283030794 hasConceptScore W4283030794C54197355 @default.
- W4283030794 hasConceptScore W4283030794C60908668 @default.
- W4283030794 hasConceptScore W4283030794C76155785 @default.
- W4283030794 hasConceptScore W4283030794C86803240 @default.
- W4283030794 hasFunder F4320320997 @default.
- W4283030794 hasFunder F4320322025 @default.
- W4283030794 hasLocation W42830307941 @default.
- W4283030794 hasOpenAccess W4283030794 @default.
- W4283030794 hasPrimaryLocation W42830307941 @default.
- W4283030794 hasRelatedWork W2979979539 @default.
- W4283030794 hasRelatedWork W3190855684 @default.
- W4283030794 hasRelatedWork W3211546796 @default.
- W4283030794 hasRelatedWork W4200196661 @default.
- W4283030794 hasRelatedWork W4206558754 @default.
- W4283030794 hasRelatedWork W4220975826 @default.
- W4283030794 hasRelatedWork W4249229055 @default.
- W4283030794 hasRelatedWork W4280611221 @default.
- W4283030794 hasRelatedWork W4294067781 @default.
- W4283030794 hasRelatedWork W4316082230 @default.
- W4283030794 isParatext "false" @default.
- W4283030794 isRetracted "false" @default.
- W4283030794 workType "article" @default.