Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283031243> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4283031243 endingPage "171" @default.
- W4283031243 startingPage "171" @default.
- W4283031243 abstract "Zero-Shot Learning (ZSL) is related to training machine learning models capable of classifying or predicting classes (labels) that are not involved in the training set (unseen classes). A well-known problem in Deep Learning (DL) is the requirement for large amount of training data. Zero-Shot learning is a straightforward approach that can be applied to overcome this problem. We propose a Hybrid Feature Model (HFM) based on conditional autoencoders for training a classical machine learning model on pseudo training data generated by two conditional autoencoders (given the semantic space as a condition): (a) the first autoencoder is trained with the visual space concatenated with the semantic space and (b) the second autoencoder is trained with the visual space as an input. Then, the decoders of both autoencoders are fed by the test data of the unseen classes to generate pseudo training data. To classify the unseen classes, the pseudo training data are combined to train a support vector machine. Tests on four different benchmark datasets show that the proposed method shows promising results compared to the current state-of-the-art when it comes to settings for both standard Zero-Shot Learning (ZSL) and Generalized Zero-Shot Learning (GZSL)." @default.
- W4283031243 created "2022-06-18" @default.
- W4283031243 creator A5044793388 @default.
- W4283031243 creator A5062997767 @default.
- W4283031243 creator A5073646721 @default.
- W4283031243 date "2022-06-16" @default.
- W4283031243 modified "2023-10-01" @default.
- W4283031243 title "HFM: A Hybrid Feature Model Based on Conditional Auto Encoders for Zero-Shot Learning" @default.
- W4283031243 cites W2070148066 @default.
- W4283031243 cites W2128532956 @default.
- W4283031243 cites W2156406284 @default.
- W4283031243 cites W2171061940 @default.
- W4283031243 cites W2996940571 @default.
- W4283031243 cites W3163933782 @default.
- W4283031243 cites W3194094366 @default.
- W4283031243 cites W3215189600 @default.
- W4283031243 cites W4200248815 @default.
- W4283031243 cites W4206936867 @default.
- W4283031243 cites W4210963151 @default.
- W4283031243 doi "https://doi.org/10.3390/jimaging8060171" @default.
- W4283031243 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35735970" @default.
- W4283031243 hasPublicationYear "2022" @default.
- W4283031243 type Work @default.
- W4283031243 citedByCount "2" @default.
- W4283031243 countsByYear W42830312432023 @default.
- W4283031243 crossrefType "journal-article" @default.
- W4283031243 hasAuthorship W4283031243A5044793388 @default.
- W4283031243 hasAuthorship W4283031243A5062997767 @default.
- W4283031243 hasAuthorship W4283031243A5073646721 @default.
- W4283031243 hasBestOaLocation W42830312431 @default.
- W4283031243 hasConcept C101738243 @default.
- W4283031243 hasConcept C108583219 @default.
- W4283031243 hasConcept C111919701 @default.
- W4283031243 hasConcept C118505674 @default.
- W4283031243 hasConcept C119857082 @default.
- W4283031243 hasConcept C13280743 @default.
- W4283031243 hasConcept C138885662 @default.
- W4283031243 hasConcept C153180895 @default.
- W4283031243 hasConcept C154945302 @default.
- W4283031243 hasConcept C16910744 @default.
- W4283031243 hasConcept C185798385 @default.
- W4283031243 hasConcept C199360897 @default.
- W4283031243 hasConcept C205649164 @default.
- W4283031243 hasConcept C2776401178 @default.
- W4283031243 hasConcept C41008148 @default.
- W4283031243 hasConcept C41895202 @default.
- W4283031243 hasConcept C83665646 @default.
- W4283031243 hasConceptScore W4283031243C101738243 @default.
- W4283031243 hasConceptScore W4283031243C108583219 @default.
- W4283031243 hasConceptScore W4283031243C111919701 @default.
- W4283031243 hasConceptScore W4283031243C118505674 @default.
- W4283031243 hasConceptScore W4283031243C119857082 @default.
- W4283031243 hasConceptScore W4283031243C13280743 @default.
- W4283031243 hasConceptScore W4283031243C138885662 @default.
- W4283031243 hasConceptScore W4283031243C153180895 @default.
- W4283031243 hasConceptScore W4283031243C154945302 @default.
- W4283031243 hasConceptScore W4283031243C16910744 @default.
- W4283031243 hasConceptScore W4283031243C185798385 @default.
- W4283031243 hasConceptScore W4283031243C199360897 @default.
- W4283031243 hasConceptScore W4283031243C205649164 @default.
- W4283031243 hasConceptScore W4283031243C2776401178 @default.
- W4283031243 hasConceptScore W4283031243C41008148 @default.
- W4283031243 hasConceptScore W4283031243C41895202 @default.
- W4283031243 hasConceptScore W4283031243C83665646 @default.
- W4283031243 hasIssue "6" @default.
- W4283031243 hasLocation W42830312431 @default.
- W4283031243 hasLocation W42830312432 @default.
- W4283031243 hasLocation W42830312433 @default.
- W4283031243 hasOpenAccess W4283031243 @default.
- W4283031243 hasPrimaryLocation W42830312431 @default.
- W4283031243 hasRelatedWork W2292254049 @default.
- W4283031243 hasRelatedWork W2669956259 @default.
- W4283031243 hasRelatedWork W2772780115 @default.
- W4283031243 hasRelatedWork W2897995864 @default.
- W4283031243 hasRelatedWork W2939353110 @default.
- W4283031243 hasRelatedWork W2998168123 @default.
- W4283031243 hasRelatedWork W4287178339 @default.
- W4283031243 hasRelatedWork W4287995534 @default.
- W4283031243 hasRelatedWork W4327774331 @default.
- W4283031243 hasRelatedWork W4380075502 @default.
- W4283031243 hasVolume "8" @default.
- W4283031243 isParatext "false" @default.
- W4283031243 isRetracted "false" @default.
- W4283031243 workType "article" @default.