Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283034941> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4283034941 abstract "The voice activity detection (VAD) is crucial in all kinds of speech applications. However, almost all existing VAD algorithms suffer from the nonstationarity of both speech and noise. To combat this difficulty, we propose a new voice activity detector, which is based on the Mel-energy features and an adaptive threshold related to the signal-to-noise ratio (SNR) estimates. In this thesis, we first justify the robustness of the Bayes classifier using the Mel-energy features over that using the Fourier spectral features in various noise environments. Then, we design an algorithm using the dynamic Mel-energy estimator and the adaptive threshold which depends on the SNR estimates. In addition, a realignment scheme is incorporated to correct the sparse-and-spurious noise estimates. Numerous simulations are carried out to evaluate the performance of our proposed VAD method and the comparisons are made with a couple existing representative schemes, namely the VAD using the likelihood ratio test with Fourier spectral energy features and that based on the enhanced time-frequency parameters. Three types of noise, namely white noise (stationary), babble noise (nonstationary) and vehicular noise (nonstationary) were artificially added by the computer for our experiments. As a result, our proposed VAD algorithm significantly outperforms other existing methods as illustrated by the corresponding receiver operating curves (ROCs). Finally, we demonstrate one of the major applications, namely speech waveform compression, associated with our new robust VAD scheme and quantify the effectiveness in terms of compression efficiency." @default.
- W4283034941 created "2022-06-18" @default.
- W4283034941 creator A5023654711 @default.
- W4283034941 date "2022-06-16" @default.
- W4283034941 modified "2023-09-29" @default.
- W4283034941 title "A Novel Robust Mel-Energy Based Voice Activity Detector for Nonstationary Noise and Its Application for Speech Waveform Compression" @default.
- W4283034941 doi "https://doi.org/10.31390/gradschool_theses.1855" @default.
- W4283034941 hasPublicationYear "2022" @default.
- W4283034941 type Work @default.
- W4283034941 citedByCount "0" @default.
- W4283034941 crossrefType "dissertation" @default.
- W4283034941 hasAuthorship W4283034941A5023654711 @default.
- W4283034941 hasBestOaLocation W42830349411 @default.
- W4283034941 hasConcept C104317684 @default.
- W4283034941 hasConcept C105795698 @default.
- W4283034941 hasConcept C112633086 @default.
- W4283034941 hasConcept C11413529 @default.
- W4283034941 hasConcept C115961682 @default.
- W4283034941 hasConcept C154945302 @default.
- W4283034941 hasConcept C185429906 @default.
- W4283034941 hasConcept C185592680 @default.
- W4283034941 hasConcept C186370098 @default.
- W4283034941 hasConcept C197424946 @default.
- W4283034941 hasConcept C28490314 @default.
- W4283034941 hasConcept C33923547 @default.
- W4283034941 hasConcept C41008148 @default.
- W4283034941 hasConcept C554190296 @default.
- W4283034941 hasConcept C55493867 @default.
- W4283034941 hasConcept C63479239 @default.
- W4283034941 hasConcept C76155785 @default.
- W4283034941 hasConcept C94915269 @default.
- W4283034941 hasConcept C99498987 @default.
- W4283034941 hasConceptScore W4283034941C104317684 @default.
- W4283034941 hasConceptScore W4283034941C105795698 @default.
- W4283034941 hasConceptScore W4283034941C112633086 @default.
- W4283034941 hasConceptScore W4283034941C11413529 @default.
- W4283034941 hasConceptScore W4283034941C115961682 @default.
- W4283034941 hasConceptScore W4283034941C154945302 @default.
- W4283034941 hasConceptScore W4283034941C185429906 @default.
- W4283034941 hasConceptScore W4283034941C185592680 @default.
- W4283034941 hasConceptScore W4283034941C186370098 @default.
- W4283034941 hasConceptScore W4283034941C197424946 @default.
- W4283034941 hasConceptScore W4283034941C28490314 @default.
- W4283034941 hasConceptScore W4283034941C33923547 @default.
- W4283034941 hasConceptScore W4283034941C41008148 @default.
- W4283034941 hasConceptScore W4283034941C554190296 @default.
- W4283034941 hasConceptScore W4283034941C55493867 @default.
- W4283034941 hasConceptScore W4283034941C63479239 @default.
- W4283034941 hasConceptScore W4283034941C76155785 @default.
- W4283034941 hasConceptScore W4283034941C94915269 @default.
- W4283034941 hasConceptScore W4283034941C99498987 @default.
- W4283034941 hasLocation W42830349411 @default.
- W4283034941 hasOpenAccess W4283034941 @default.
- W4283034941 hasPrimaryLocation W42830349411 @default.
- W4283034941 hasRelatedWork W1966360202 @default.
- W4283034941 hasRelatedWork W2017016272 @default.
- W4283034941 hasRelatedWork W2021052909 @default.
- W4283034941 hasRelatedWork W2028369743 @default.
- W4283034941 hasRelatedWork W2081771260 @default.
- W4283034941 hasRelatedWork W2122453052 @default.
- W4283034941 hasRelatedWork W2132155476 @default.
- W4283034941 hasRelatedWork W2187207494 @default.
- W4283034941 hasRelatedWork W4360584149 @default.
- W4283034941 hasRelatedWork W73199774 @default.
- W4283034941 isParatext "false" @default.
- W4283034941 isRetracted "false" @default.
- W4283034941 workType "dissertation" @default.