Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283067184> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4283067184 endingPage "4772" @default.
- W4283067184 startingPage "4763" @default.
- W4283067184 abstract "In recent years, reinforcement learning (RL) has achieved a remarkable achievement and it has attracted researchers' attention in modeling real-life scenarios by expanding its research beyond conventional complex games. Prediction of optimal treatment regimens from observational real clinical data is being popularized, and more advanced versions of RL algorithms are being implemented in the literature. However, RL-generated medications still need careful supervision of expertise parties or doctors in healthcare. Hence, in this paper, a Supervised Optimal Chemotherapy Regimen (SOCR) approach to investigate optimal chemotherapy-dosing schedule for cancer patients was presented by using Offline Reinforcement Learning. The optimal policy suggested by the RL approach was supervised by incorporating previous treatment decisions of oncologists, which could add clinical expertise knowledge on algorithmic results. Presented SOCR approach followed a model-based architecture using conservative Q-Learning (CQL) algorithm. The developed model was tested using a manually constructed database of forty Stage-IV colon cancer patients, receiving line-1 chemotherapy treatments, who were clinically classified as 'Bevacizumab based patient' and 'Cetuximab based patient'. Experimental results revealed that the supervision from the oncologists has considered the effect to stabilize chemotherapy regimen and it was suggested that the proposed framework could be successfully used as a supportive model for oncologists in deciding their treatment decisions." @default.
- W4283067184 created "2022-06-19" @default.
- W4283067184 creator A5001846472 @default.
- W4283067184 creator A5012906852 @default.
- W4283067184 creator A5024754182 @default.
- W4283067184 creator A5063435835 @default.
- W4283067184 creator A5073725553 @default.
- W4283067184 creator A5090980414 @default.
- W4283067184 date "2022-09-01" @default.
- W4283067184 modified "2023-10-14" @default.
- W4283067184 title "Supervised Optimal Chemotherapy Regimen Based on Offline Reinforcement Learning" @default.
- W4283067184 cites W192920577 @default.
- W4283067184 cites W1984613448 @default.
- W4283067184 cites W1986985221 @default.
- W4283067184 cites W2015687733 @default.
- W4283067184 cites W2065289552 @default.
- W4283067184 cites W2084697628 @default.
- W4283067184 cites W2096032071 @default.
- W4283067184 cites W2147342239 @default.
- W4283067184 cites W2156682402 @default.
- W4283067184 cites W2160877908 @default.
- W4283067184 cites W2319830894 @default.
- W4283067184 cites W2611759197 @default.
- W4283067184 cites W2748828099 @default.
- W4283067184 cites W2893300355 @default.
- W4283067184 cites W2911667635 @default.
- W4283067184 cites W2921628782 @default.
- W4283067184 cites W2963561234 @default.
- W4283067184 cites W3022194887 @default.
- W4283067184 cites W3025019304 @default.
- W4283067184 cites W3040490156 @default.
- W4283067184 cites W3040948586 @default.
- W4283067184 cites W3090369311 @default.
- W4283067184 cites W3123794201 @default.
- W4283067184 cites W3158510005 @default.
- W4283067184 cites W3183899662 @default.
- W4283067184 cites W4211171425 @default.
- W4283067184 cites W4211221179 @default.
- W4283067184 doi "https://doi.org/10.1109/jbhi.2022.3183854" @default.
- W4283067184 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35714083" @default.
- W4283067184 hasPublicationYear "2022" @default.
- W4283067184 type Work @default.
- W4283067184 citedByCount "4" @default.
- W4283067184 countsByYear W42830671842022 @default.
- W4283067184 countsByYear W42830671842023 @default.
- W4283067184 crossrefType "journal-article" @default.
- W4283067184 hasAuthorship W4283067184A5001846472 @default.
- W4283067184 hasAuthorship W4283067184A5012906852 @default.
- W4283067184 hasAuthorship W4283067184A5024754182 @default.
- W4283067184 hasAuthorship W4283067184A5063435835 @default.
- W4283067184 hasAuthorship W4283067184A5073725553 @default.
- W4283067184 hasAuthorship W4283067184A5090980414 @default.
- W4283067184 hasConcept C111919701 @default.
- W4283067184 hasConcept C119857082 @default.
- W4283067184 hasConcept C141071460 @default.
- W4283067184 hasConcept C154945302 @default.
- W4283067184 hasConcept C19527891 @default.
- W4283067184 hasConcept C2776694085 @default.
- W4283067184 hasConcept C2777802072 @default.
- W4283067184 hasConcept C2781413609 @default.
- W4283067184 hasConcept C41008148 @default.
- W4283067184 hasConcept C68387754 @default.
- W4283067184 hasConcept C71924100 @default.
- W4283067184 hasConcept C97541855 @default.
- W4283067184 hasConceptScore W4283067184C111919701 @default.
- W4283067184 hasConceptScore W4283067184C119857082 @default.
- W4283067184 hasConceptScore W4283067184C141071460 @default.
- W4283067184 hasConceptScore W4283067184C154945302 @default.
- W4283067184 hasConceptScore W4283067184C19527891 @default.
- W4283067184 hasConceptScore W4283067184C2776694085 @default.
- W4283067184 hasConceptScore W4283067184C2777802072 @default.
- W4283067184 hasConceptScore W4283067184C2781413609 @default.
- W4283067184 hasConceptScore W4283067184C41008148 @default.
- W4283067184 hasConceptScore W4283067184C68387754 @default.
- W4283067184 hasConceptScore W4283067184C71924100 @default.
- W4283067184 hasConceptScore W4283067184C97541855 @default.
- W4283067184 hasFunder F4320322795 @default.
- W4283067184 hasFunder F4320323524 @default.
- W4283067184 hasIssue "9" @default.
- W4283067184 hasLocation W42830671841 @default.
- W4283067184 hasLocation W42830671842 @default.
- W4283067184 hasOpenAccess W4283067184 @default.
- W4283067184 hasPrimaryLocation W42830671841 @default.
- W4283067184 hasRelatedWork W2006598932 @default.
- W4283067184 hasRelatedWork W2063622451 @default.
- W4283067184 hasRelatedWork W2354408890 @default.
- W4283067184 hasRelatedWork W2405544616 @default.
- W4283067184 hasRelatedWork W2748952813 @default.
- W4283067184 hasRelatedWork W2899084033 @default.
- W4283067184 hasRelatedWork W3074294383 @default.
- W4283067184 hasRelatedWork W4238549103 @default.
- W4283067184 hasRelatedWork W4319083788 @default.
- W4283067184 hasRelatedWork W4380186280 @default.
- W4283067184 hasVolume "26" @default.
- W4283067184 isParatext "false" @default.
- W4283067184 isRetracted "false" @default.
- W4283067184 workType "article" @default.