Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283068548> ?p ?o ?g. }
- W4283068548 endingPage "55" @default.
- W4283068548 startingPage "47" @default.
- W4283068548 abstract "Segmentation of involved lymph nodes on head and neck computed tomography (HN-CT) scans is necessary for the radiotherapy planning of early-stage human papilloma virus (HPV) associated oropharynx cancers (OPC). We aimed to train a deep learning convolutional neural network (DL-CNN) to segment involved lymph nodes on HN-CT scans.Ground-truth segmentation of involved nodes was performed on pre-surgical HN-CT scans for 90 patients who underwent levels II-IV neck dissection for node-positive HPV-OPC (training/validation [n = 70] and testing [n = 20]). A 5-fold cross validation approach was used to train 5 DL-CNN sub-models based on a residual U-net architecture. Validation and testing segmentation masks were compared to ground-truth masks using predetermined metrics. A lymph auto-detection model to discriminate between node-positive and node-negative HN-CT scans was developed by thresholding segmentation model outputs and evaluated using the area under the receiver operating characteristic curve (AUC).In the DL-CNN validation phase, all sub-models yielded segmentation masks with median Dice ≥ 0.90 and median volume similarity score of ≥ 0.95. In the testing phase, the DL-CNN produced consensus segmentation masks with median Dice of 0.92 (IQR, 0.89-0.95), median volume similarity of 0.97 (IQR, 0.94-0.99), and median Hausdorff distance of 4.52 mm (IQR, 1.22-8.38). The detection model achieved an AUC of 0.98.The results from this single-institution study demonstrate the successful automation of lymph node segmentation for patients with HPV-OPC using a DL-CNN. Future studies, including validation with an external dataset, are necessary to clarify its role in the larger radiation oncology treatment planning workflow." @default.
- W4283068548 created "2022-06-19" @default.
- W4283068548 creator A5020727877 @default.
- W4283068548 creator A5028995506 @default.
- W4283068548 creator A5032690739 @default.
- W4283068548 creator A5033187358 @default.
- W4283068548 creator A5044495249 @default.
- W4283068548 creator A5065692438 @default.
- W4283068548 creator A5071409978 @default.
- W4283068548 creator A5072763605 @default.
- W4283068548 date "2022-09-01" @default.
- W4283068548 modified "2023-10-03" @default.
- W4283068548 title "Auto-detection and segmentation of involved lymph nodes in HPV-associated oropharyngeal cancer using a convolutional deep learning neural network" @default.
- W4283068548 cites W2107924942 @default.
- W4283068548 cites W2109987132 @default.
- W4283068548 cites W2110311036 @default.
- W4283068548 cites W2148347694 @default.
- W4283068548 cites W2797460638 @default.
- W4283068548 cites W2804676275 @default.
- W4283068548 cites W2890012362 @default.
- W4283068548 cites W2896527999 @default.
- W4283068548 cites W2911690798 @default.
- W4283068548 cites W2940466532 @default.
- W4283068548 cites W2942231644 @default.
- W4283068548 cites W2967453129 @default.
- W4283068548 cites W3041943381 @default.
- W4283068548 cites W3045552244 @default.
- W4283068548 cites W3092818728 @default.
- W4283068548 cites W3125779006 @default.
- W4283068548 cites W3129079955 @default.
- W4283068548 cites W3146895229 @default.
- W4283068548 cites W3184930236 @default.
- W4283068548 cites W3206830804 @default.
- W4283068548 cites W4200060832 @default.
- W4283068548 cites W4206841660 @default.
- W4283068548 cites W4226175101 @default.
- W4283068548 cites W4226339397 @default.
- W4283068548 doi "https://doi.org/10.1016/j.ctro.2022.06.007" @default.
- W4283068548 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35782963" @default.
- W4283068548 hasPublicationYear "2022" @default.
- W4283068548 type Work @default.
- W4283068548 citedByCount "9" @default.
- W4283068548 countsByYear W42830685482022 @default.
- W4283068548 countsByYear W42830685482023 @default.
- W4283068548 crossrefType "journal-article" @default.
- W4283068548 hasAuthorship W4283068548A5020727877 @default.
- W4283068548 hasAuthorship W4283068548A5028995506 @default.
- W4283068548 hasAuthorship W4283068548A5032690739 @default.
- W4283068548 hasAuthorship W4283068548A5033187358 @default.
- W4283068548 hasAuthorship W4283068548A5044495249 @default.
- W4283068548 hasAuthorship W4283068548A5065692438 @default.
- W4283068548 hasAuthorship W4283068548A5071409978 @default.
- W4283068548 hasAuthorship W4283068548A5072763605 @default.
- W4283068548 hasBestOaLocation W42830685483 @default.
- W4283068548 hasConcept C108583219 @default.
- W4283068548 hasConcept C124504099 @default.
- W4283068548 hasConcept C126838900 @default.
- W4283068548 hasConcept C141898687 @default.
- W4283068548 hasConcept C142724271 @default.
- W4283068548 hasConcept C146357865 @default.
- W4283068548 hasConcept C151730666 @default.
- W4283068548 hasConcept C153180895 @default.
- W4283068548 hasConcept C154945302 @default.
- W4283068548 hasConcept C163892561 @default.
- W4283068548 hasConcept C2780849966 @default.
- W4283068548 hasConcept C2989005 @default.
- W4283068548 hasConcept C41008148 @default.
- W4283068548 hasConcept C71924100 @default.
- W4283068548 hasConcept C81363708 @default.
- W4283068548 hasConcept C86803240 @default.
- W4283068548 hasConcept C89600930 @default.
- W4283068548 hasConceptScore W4283068548C108583219 @default.
- W4283068548 hasConceptScore W4283068548C124504099 @default.
- W4283068548 hasConceptScore W4283068548C126838900 @default.
- W4283068548 hasConceptScore W4283068548C141898687 @default.
- W4283068548 hasConceptScore W4283068548C142724271 @default.
- W4283068548 hasConceptScore W4283068548C146357865 @default.
- W4283068548 hasConceptScore W4283068548C151730666 @default.
- W4283068548 hasConceptScore W4283068548C153180895 @default.
- W4283068548 hasConceptScore W4283068548C154945302 @default.
- W4283068548 hasConceptScore W4283068548C163892561 @default.
- W4283068548 hasConceptScore W4283068548C2780849966 @default.
- W4283068548 hasConceptScore W4283068548C2989005 @default.
- W4283068548 hasConceptScore W4283068548C41008148 @default.
- W4283068548 hasConceptScore W4283068548C71924100 @default.
- W4283068548 hasConceptScore W4283068548C81363708 @default.
- W4283068548 hasConceptScore W4283068548C86803240 @default.
- W4283068548 hasConceptScore W4283068548C89600930 @default.
- W4283068548 hasLocation W42830685481 @default.
- W4283068548 hasLocation W42830685482 @default.
- W4283068548 hasLocation W42830685483 @default.
- W4283068548 hasLocation W42830685484 @default.
- W4283068548 hasLocation W42830685485 @default.
- W4283068548 hasLocation W42830685486 @default.
- W4283068548 hasLocation W42830685487 @default.
- W4283068548 hasLocation W42830685488 @default.
- W4283068548 hasOpenAccess W4283068548 @default.
- W4283068548 hasPrimaryLocation W42830685481 @default.