Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283072078> ?p ?o ?g. }
- W4283072078 endingPage "103742" @default.
- W4283072078 startingPage "103742" @default.
- W4283072078 abstract "This paper proposes a real-time signal timing prediction based on deep learning algorithms that takes various traffic flow parameters as input and predicts signal timing parameters. Signal retiming methods have been traditionally used to improve traffic flow at intersections by reducing delay and improving the level of service at signalized intersections. This can often be a lengthy process that includes several iterations of various optimization methods. In this paper, we have used detector data to calculate the traffic flow metrics at several intersections. This processed data is then used to predict the signal timing and phasing for the next six cycles with reasonable accuracy. Seventeen intersections from two distinct corridors have been used in this study. One of the corridors runs adaptive signal control and the other corridor runs actuated signal control. The proposed CNN-LSTM model shows that cycle length can be accurately predicted with an MAE of 7 to 16 s and phase duration can be predicted with an MAE of 3 to 8 s. The trained model was also successfully validated at five different unknown intersections." @default.
- W4283072078 created "2022-06-19" @default.
- W4283072078 creator A5008603899 @default.
- W4283072078 creator A5029381066 @default.
- W4283072078 creator A5040847417 @default.
- W4283072078 date "2022-08-01" @default.
- W4283072078 modified "2023-10-02" @default.
- W4283072078 title "Using CNN-LSTM to predict signal phasing and timing aided by High-Resolution detector data" @default.
- W4283072078 cites W1702045496 @default.
- W4283072078 cites W1964554804 @default.
- W4283072078 cites W1982717593 @default.
- W4283072078 cites W1987437394 @default.
- W4283072078 cites W2004353783 @default.
- W4283072078 cites W2008483594 @default.
- W4283072078 cites W2035447179 @default.
- W4283072078 cites W2035577721 @default.
- W4283072078 cites W2040297119 @default.
- W4283072078 cites W2063251960 @default.
- W4283072078 cites W2082285763 @default.
- W4283072078 cites W2083238230 @default.
- W4283072078 cites W2090717427 @default.
- W4283072078 cites W2112451069 @default.
- W4283072078 cites W2120387195 @default.
- W4283072078 cites W2122169437 @default.
- W4283072078 cites W2152196380 @default.
- W4283072078 cites W2155655560 @default.
- W4283072078 cites W2157525649 @default.
- W4283072078 cites W2158107760 @default.
- W4283072078 cites W2162823802 @default.
- W4283072078 cites W2288889479 @default.
- W4283072078 cites W2343458236 @default.
- W4283072078 cites W2344029946 @default.
- W4283072078 cites W2498017881 @default.
- W4283072078 cites W2533328922 @default.
- W4283072078 cites W2573587735 @default.
- W4283072078 cites W2579495707 @default.
- W4283072078 cites W2583466634 @default.
- W4283072078 cites W2613331518 @default.
- W4283072078 cites W2616273432 @default.
- W4283072078 cites W2884002829 @default.
- W4283072078 cites W2899160797 @default.
- W4283072078 cites W2900105886 @default.
- W4283072078 cites W2905967367 @default.
- W4283072078 cites W2945177784 @default.
- W4283072078 cites W2945287357 @default.
- W4283072078 cites W2955819484 @default.
- W4283072078 cites W2959791805 @default.
- W4283072078 cites W2991137082 @default.
- W4283072078 cites W3011541886 @default.
- W4283072078 cites W3025175085 @default.
- W4283072078 cites W3035530851 @default.
- W4283072078 cites W3037885559 @default.
- W4283072078 cites W3093209099 @default.
- W4283072078 cites W3103720336 @default.
- W4283072078 cites W3117629641 @default.
- W4283072078 cites W3120190876 @default.
- W4283072078 cites W3129023689 @default.
- W4283072078 cites W3132193934 @default.
- W4283072078 cites W4234227010 @default.
- W4283072078 cites W4240043465 @default.
- W4283072078 doi "https://doi.org/10.1016/j.trc.2022.103742" @default.
- W4283072078 hasPublicationYear "2022" @default.
- W4283072078 type Work @default.
- W4283072078 citedByCount "6" @default.
- W4283072078 countsByYear W42830720782022 @default.
- W4283072078 countsByYear W42830720782023 @default.
- W4283072078 crossrefType "journal-article" @default.
- W4283072078 hasAuthorship W4283072078A5008603899 @default.
- W4283072078 hasAuthorship W4283072078A5029381066 @default.
- W4283072078 hasAuthorship W4283072078A5040847417 @default.
- W4283072078 hasConcept C111919701 @default.
- W4283072078 hasConcept C11413529 @default.
- W4283072078 hasConcept C119599485 @default.
- W4283072078 hasConcept C127413603 @default.
- W4283072078 hasConcept C135393689 @default.
- W4283072078 hasConcept C154945302 @default.
- W4283072078 hasConcept C199360897 @default.
- W4283072078 hasConcept C207512268 @default.
- W4283072078 hasConcept C2776006172 @default.
- W4283072078 hasConcept C2779843651 @default.
- W4283072078 hasConcept C2987419075 @default.
- W4283072078 hasConcept C38652104 @default.
- W4283072078 hasConcept C41008148 @default.
- W4283072078 hasConcept C41112130 @default.
- W4283072078 hasConcept C76155785 @default.
- W4283072078 hasConcept C79403827 @default.
- W4283072078 hasConcept C94915269 @default.
- W4283072078 hasConcept C98045186 @default.
- W4283072078 hasConceptScore W4283072078C111919701 @default.
- W4283072078 hasConceptScore W4283072078C11413529 @default.
- W4283072078 hasConceptScore W4283072078C119599485 @default.
- W4283072078 hasConceptScore W4283072078C127413603 @default.
- W4283072078 hasConceptScore W4283072078C135393689 @default.
- W4283072078 hasConceptScore W4283072078C154945302 @default.
- W4283072078 hasConceptScore W4283072078C199360897 @default.
- W4283072078 hasConceptScore W4283072078C207512268 @default.
- W4283072078 hasConceptScore W4283072078C2776006172 @default.
- W4283072078 hasConceptScore W4283072078C2779843651 @default.