Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283075327> ?p ?o ?g. }
- W4283075327 endingPage "4056" @default.
- W4283075327 startingPage "4034" @default.
- W4283075327 abstract "In precision medicine, the ultimate goal is to recommend the most effective treatment to an individual patient based on patient-specific molecular and clinical profiles, possibly high-dimensional. To advance cancer treatment, large-scale screenings of cancer cell lines against chemical compounds have been performed to help better understand the relationship between genomic features and drug response; existing machine learning approaches use exclusively supervised learning, including penalized regression and recommender systems. However, it would be more efficient to apply reinforcement learning to sequentially learn as data accrue, including selecting the most promising therapy for a patient given individual molecular and clinical features and then collecting and learning from the corresponding data. In this article, we propose a novel personalized ranking system called Proximal Policy Optimization Ranking (PPORank), which ranks the drugs based on their predicted effects per cell line (or patient) in the framework of deep reinforcement learning (DRL). Modeled as a Markov decision process, the proposed method learns to recommend the most suitable drugs sequentially and continuously over time. As a proof-of-concept, we conduct experiments on two large-scale cancer cell line data sets in addition to simulated data. The results demonstrate that the proposed DRL-based PPORank outperforms the state-of-the-art competitors based on supervised learning. Taken together, we conclude that novel methods in the framework of DRL have great potential for precision medicine and should be further studied." @default.
- W4283075327 created "2022-06-19" @default.
- W4283075327 creator A5018997928 @default.
- W4283075327 creator A5074904348 @default.
- W4283075327 creator A5077972623 @default.
- W4283075327 date "2022-06-18" @default.
- W4283075327 modified "2023-10-15" @default.
- W4283075327 title "Deep reinforcement learning for personalized treatment recommendation" @default.
- W4283075327 cites W1752500127 @default.
- W4283075327 cites W19078547 @default.
- W4283075327 cites W1981158530 @default.
- W4283075327 cites W1994857208 @default.
- W4283075327 cites W2027795129 @default.
- W4283075327 cites W2038146650 @default.
- W4283075327 cites W2043398720 @default.
- W4283075327 cites W2044702943 @default.
- W4283075327 cites W2049655669 @default.
- W4283075327 cites W2069870183 @default.
- W4283075327 cites W2085227190 @default.
- W4283075327 cites W2096283457 @default.
- W4283075327 cites W2104709519 @default.
- W4283075327 cites W2108933868 @default.
- W4283075327 cites W2110017381 @default.
- W4283075327 cites W2115330997 @default.
- W4283075327 cites W2116034036 @default.
- W4283075327 cites W2125789330 @default.
- W4283075327 cites W2129860849 @default.
- W4283075327 cites W2132314908 @default.
- W4283075327 cites W2156682402 @default.
- W4283075327 cites W2157331557 @default.
- W4283075327 cites W2158485828 @default.
- W4283075327 cites W2163084572 @default.
- W4283075327 cites W2165612525 @default.
- W4283075327 cites W2175970000 @default.
- W4283075327 cites W2177317049 @default.
- W4283075327 cites W2240609664 @default.
- W4283075327 cites W2308659819 @default.
- W4283075327 cites W2333198304 @default.
- W4283075327 cites W2411613392 @default.
- W4283075327 cites W2414449891 @default.
- W4283075327 cites W2443960221 @default.
- W4283075327 cites W2461427403 @default.
- W4283075327 cites W2501016862 @default.
- W4283075327 cites W2508784321 @default.
- W4283075327 cites W2513486311 @default.
- W4283075327 cites W2549976854 @default.
- W4283075327 cites W2560367415 @default.
- W4283075327 cites W2604662567 @default.
- W4283075327 cites W2740384884 @default.
- W4283075327 cites W2742007096 @default.
- W4283075327 cites W2747036018 @default.
- W4283075327 cites W2748606465 @default.
- W4283075327 cites W2766329790 @default.
- W4283075327 cites W2767593474 @default.
- W4283075327 cites W2792791113 @default.
- W4283075327 cites W2807463161 @default.
- W4283075327 cites W2808199968 @default.
- W4283075327 cites W2889748820 @default.
- W4283075327 cites W2908893749 @default.
- W4283075327 cites W2950063908 @default.
- W4283075327 cites W2952285211 @default.
- W4283075327 cites W2963561234 @default.
- W4283075327 cites W2963735256 @default.
- W4283075327 cites W2964182926 @default.
- W4283075327 cites W3025019304 @default.
- W4283075327 cites W3090832565 @default.
- W4283075327 cites W3093265161 @default.
- W4283075327 cites W3112177735 @default.
- W4283075327 cites W3123794201 @default.
- W4283075327 cites W3183452672 @default.
- W4283075327 cites W3216656735 @default.
- W4283075327 cites W4248112284 @default.
- W4283075327 cites W4283075327 @default.
- W4283075327 doi "https://doi.org/10.1002/sim.9491" @default.
- W4283075327 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35716038" @default.
- W4283075327 hasPublicationYear "2022" @default.
- W4283075327 type Work @default.
- W4283075327 citedByCount "9" @default.
- W4283075327 countsByYear W42830753272022 @default.
- W4283075327 countsByYear W42830753272023 @default.
- W4283075327 crossrefType "journal-article" @default.
- W4283075327 hasAuthorship W4283075327A5018997928 @default.
- W4283075327 hasAuthorship W4283075327A5074904348 @default.
- W4283075327 hasAuthorship W4283075327A5077972623 @default.
- W4283075327 hasBestOaLocation W42830753271 @default.
- W4283075327 hasConcept C105795698 @default.
- W4283075327 hasConcept C106189395 @default.
- W4283075327 hasConcept C111919701 @default.
- W4283075327 hasConcept C119857082 @default.
- W4283075327 hasConcept C136389625 @default.
- W4283075327 hasConcept C142724271 @default.
- W4283075327 hasConcept C154945302 @default.
- W4283075327 hasConcept C159886148 @default.
- W4283075327 hasConcept C163763905 @default.
- W4283075327 hasConcept C189430467 @default.
- W4283075327 hasConcept C32220436 @default.
- W4283075327 hasConcept C33923547 @default.
- W4283075327 hasConcept C41008148 @default.