Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283079968> ?p ?o ?g. }
- W4283079968 endingPage "522" @default.
- W4283079968 startingPage "507" @default.
- W4283079968 abstract "In this study, we have compared YOLOv4, a single-shot detector to Faster-RCNN, a two-shot detector to detect and classify whiteflies on yellow-sticky tape (YST). An IoT remote whitefly monitoring station was developed and placed in a whitefly rearing room. Images of whiteflies attracted to the trap were recorded 2× per day. A total of 120 whitefly images were labeled using labeling software and split into a training and testing dataset, and 18 additional yellow-stick tape images were labeled with false positives to increase the model accuracy from remote whitefly monitors in the field that created false positives due to water beads and reflective light on the tape after rain. The two-shot detection model has two stages: region proposal and then classification of those regions and refinement of the location prediction. Single-shot detection skips the region proposal stage and yields final localization and content prediction at once. Because of this difference, YOLOv4 is faster but less accurate than Faster-RCNN. From the results of our study, it is clear that Faster-RCNN (precision—95.08%, F-1 Score—0.96, recall—98.69%) achieved a higher level of performance than YOLOv4 (precision—71.77%, F-1 score—0.83, recall—73.31%), and will be adopted for further development of the monitoring station." @default.
- W4283079968 created "2022-06-19" @default.
- W4283079968 creator A5004599054 @default.
- W4283079968 creator A5016328159 @default.
- W4283079968 creator A5021411079 @default.
- W4283079968 creator A5022303452 @default.
- W4283079968 creator A5056971519 @default.
- W4283079968 creator A5064001163 @default.
- W4283079968 creator A5064256854 @default.
- W4283079968 creator A5071634840 @default.
- W4283079968 date "2022-06-10" @default.
- W4283079968 modified "2023-10-06" @default.
- W4283079968 title "Comparison of Single-Shot and Two-Shot Deep Neural Network Models for Whitefly Detection in IoT Web Application" @default.
- W4283079968 cites W1952099871 @default.
- W4283079968 cites W1979062633 @default.
- W4283079968 cites W2011660541 @default.
- W4283079968 cites W2055728185 @default.
- W4283079968 cites W2090813402 @default.
- W4283079968 cites W2101722791 @default.
- W4283079968 cites W2152386688 @default.
- W4283079968 cites W2211217473 @default.
- W4283079968 cites W2285671993 @default.
- W4283079968 cites W2783679175 @default.
- W4283079968 cites W2884561390 @default.
- W4283079968 cites W2963037989 @default.
- W4283079968 cites W2963150697 @default.
- W4283079968 cites W3014580981 @default.
- W4283079968 cites W3036409016 @default.
- W4283079968 cites W3120258623 @default.
- W4283079968 cites W3134754127 @default.
- W4283079968 cites W3149894872 @default.
- W4283079968 cites W639708223 @default.
- W4283079968 doi "https://doi.org/10.3390/agriengineering4020034" @default.
- W4283079968 hasPublicationYear "2022" @default.
- W4283079968 type Work @default.
- W4283079968 citedByCount "2" @default.
- W4283079968 countsByYear W42830799682023 @default.
- W4283079968 crossrefType "journal-article" @default.
- W4283079968 hasAuthorship W4283079968A5004599054 @default.
- W4283079968 hasAuthorship W4283079968A5016328159 @default.
- W4283079968 hasAuthorship W4283079968A5021411079 @default.
- W4283079968 hasAuthorship W4283079968A5022303452 @default.
- W4283079968 hasAuthorship W4283079968A5056971519 @default.
- W4283079968 hasAuthorship W4283079968A5064001163 @default.
- W4283079968 hasAuthorship W4283079968A5064256854 @default.
- W4283079968 hasAuthorship W4283079968A5071634840 @default.
- W4283079968 hasBestOaLocation W42830799681 @default.
- W4283079968 hasConcept C100660578 @default.
- W4283079968 hasConcept C120665830 @default.
- W4283079968 hasConcept C121332964 @default.
- W4283079968 hasConcept C138885662 @default.
- W4283079968 hasConcept C144027150 @default.
- W4283079968 hasConcept C153180895 @default.
- W4283079968 hasConcept C154945302 @default.
- W4283079968 hasConcept C191897082 @default.
- W4283079968 hasConcept C192562407 @default.
- W4283079968 hasConcept C2778344882 @default.
- W4283079968 hasConcept C2781436638 @default.
- W4283079968 hasConcept C3019835501 @default.
- W4283079968 hasConcept C41008148 @default.
- W4283079968 hasConcept C41895202 @default.
- W4283079968 hasConcept C50644808 @default.
- W4283079968 hasConcept C64869954 @default.
- W4283079968 hasConcept C76155785 @default.
- W4283079968 hasConcept C81669768 @default.
- W4283079968 hasConcept C86803240 @default.
- W4283079968 hasConcept C94915269 @default.
- W4283079968 hasConceptScore W4283079968C100660578 @default.
- W4283079968 hasConceptScore W4283079968C120665830 @default.
- W4283079968 hasConceptScore W4283079968C121332964 @default.
- W4283079968 hasConceptScore W4283079968C138885662 @default.
- W4283079968 hasConceptScore W4283079968C144027150 @default.
- W4283079968 hasConceptScore W4283079968C153180895 @default.
- W4283079968 hasConceptScore W4283079968C154945302 @default.
- W4283079968 hasConceptScore W4283079968C191897082 @default.
- W4283079968 hasConceptScore W4283079968C192562407 @default.
- W4283079968 hasConceptScore W4283079968C2778344882 @default.
- W4283079968 hasConceptScore W4283079968C2781436638 @default.
- W4283079968 hasConceptScore W4283079968C3019835501 @default.
- W4283079968 hasConceptScore W4283079968C41008148 @default.
- W4283079968 hasConceptScore W4283079968C41895202 @default.
- W4283079968 hasConceptScore W4283079968C50644808 @default.
- W4283079968 hasConceptScore W4283079968C64869954 @default.
- W4283079968 hasConceptScore W4283079968C76155785 @default.
- W4283079968 hasConceptScore W4283079968C81669768 @default.
- W4283079968 hasConceptScore W4283079968C86803240 @default.
- W4283079968 hasConceptScore W4283079968C94915269 @default.
- W4283079968 hasIssue "2" @default.
- W4283079968 hasLocation W42830799681 @default.
- W4283079968 hasOpenAccess W4283079968 @default.
- W4283079968 hasPrimaryLocation W42830799681 @default.
- W4283079968 hasRelatedWork W1504196546 @default.
- W4283079968 hasRelatedWork W2057719290 @default.
- W4283079968 hasRelatedWork W2100569771 @default.
- W4283079968 hasRelatedWork W2104474803 @default.
- W4283079968 hasRelatedWork W2386387936 @default.
- W4283079968 hasRelatedWork W3142396426 @default.
- W4283079968 hasRelatedWork W4230158770 @default.