Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283159129> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4283159129 endingPage "123118" @default.
- W4283159129 startingPage "123118" @default.
- W4283159129 abstract "• Artificial neural network-based models are developed for prediction of nusselt number and friction factor. • The predictions apply for fully developed laminar flow in constant cross-section ducts of different cross section shapes. • The machine learning (ML) model predictions are validated and compared against numerical simulations. • Use of ML models in shape optimization of channel cross section for different objective functions is demonstrated. • Guidelines for usage of the developed ML models are discussed. The design optimization of various thermal management components such as cold plates, heat sinks, and heat exchangers relies on accurate prediction of flow heat transfer and pressure drop. During the iterative design process, the heat transfer and pressure drop is typically either computed numerically or obtained using geometry-specific correlations for Nusselt number and friction factor. Numerical approaches are accurate for evaluation of a single design but become computationally expensive if many design iterations are required (such as during formal optimization processes). Correlation-based approaches restrict the design space to a specific set of geometries for which correlations are available. Surrogate models for the Nusselt number and friction factor, which are more universally applicable to all geometries than traditional correlations, would enable flexible and computationally inexpensive design optimization. The current work develops machine-learning-based surrogate models for predicting the Nusselt number and friction factor under fully developed internal flow in channels of arbitrary cross section and demonstrates use of these models for optimization of the cross-sectional channel shape. The predictive performance and generality of the machine learning surrogate models is first verified on various shapes outside the training dataset, and then the models are used in the design optimization of flow cross sections based on performance metrics that weigh both heat transfer and pressure drop. The optimization process leads to novel shapes outside the training data, and so numerical simulations are carried out on these optimized shapes to compare with the surrogate model predictions and show their performance is at least as good as that of shapes with known correlations available. A three-lobed shape was found to reduce friction factor, whereas a pentagon with rounded corners and an ice cream cone-shaped duct, both found using different performance metrics. Although the ML model predictions lose accuracy outside the training set for these novel shapes, the predictions follow the correct trends with parametric variations of the shape and therefore successfully direct the search toward optimized shapes." @default.
- W4283159129 created "2022-06-21" @default.
- W4283159129 creator A5074249013 @default.
- W4283159129 creator A5075655981 @default.
- W4283159129 date "2022-10-01" @default.
- W4283159129 modified "2023-09-25" @default.
- W4283159129 title "Machine-learning-aided design optimization of internal flow channel cross-sections" @default.
- W4283159129 cites W1977274214 @default.
- W4283159129 cites W1982751286 @default.
- W4283159129 cites W1984621887 @default.
- W4283159129 cites W2024666608 @default.
- W4283159129 cites W2090064789 @default.
- W4283159129 cites W2466626304 @default.
- W4283159129 cites W2569349941 @default.
- W4283159129 cites W2728831864 @default.
- W4283159129 cites W2754029504 @default.
- W4283159129 cites W2894665398 @default.
- W4283159129 cites W2914064718 @default.
- W4283159129 cites W2933878133 @default.
- W4283159129 cites W2946494228 @default.
- W4283159129 cites W2946680784 @default.
- W4283159129 cites W2962014754 @default.
- W4283159129 cites W2997791226 @default.
- W4283159129 cites W3035621897 @default.
- W4283159129 cites W3037409910 @default.
- W4283159129 cites W3083393674 @default.
- W4283159129 cites W3084122233 @default.
- W4283159129 cites W3093695208 @default.
- W4283159129 cites W3102140816 @default.
- W4283159129 cites W3109916648 @default.
- W4283159129 cites W3112215575 @default.
- W4283159129 cites W3135457600 @default.
- W4283159129 cites W4236966694 @default.
- W4283159129 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2022.123118" @default.
- W4283159129 hasPublicationYear "2022" @default.
- W4283159129 type Work @default.
- W4283159129 citedByCount "4" @default.
- W4283159129 countsByYear W42831591292023 @default.
- W4283159129 crossrefType "journal-article" @default.
- W4283159129 hasAuthorship W4283159129A5074249013 @default.
- W4283159129 hasAuthorship W4283159129A5075655981 @default.
- W4283159129 hasConcept C121332964 @default.
- W4283159129 hasConcept C127162648 @default.
- W4283159129 hasConcept C171483109 @default.
- W4283159129 hasConcept C192562407 @default.
- W4283159129 hasConcept C38349280 @default.
- W4283159129 hasConcept C41008148 @default.
- W4283159129 hasConcept C57879066 @default.
- W4283159129 hasConcept C76155785 @default.
- W4283159129 hasConceptScore W4283159129C121332964 @default.
- W4283159129 hasConceptScore W4283159129C127162648 @default.
- W4283159129 hasConceptScore W4283159129C171483109 @default.
- W4283159129 hasConceptScore W4283159129C192562407 @default.
- W4283159129 hasConceptScore W4283159129C38349280 @default.
- W4283159129 hasConceptScore W4283159129C41008148 @default.
- W4283159129 hasConceptScore W4283159129C57879066 @default.
- W4283159129 hasConceptScore W4283159129C76155785 @default.
- W4283159129 hasLocation W42831591291 @default.
- W4283159129 hasOpenAccess W4283159129 @default.
- W4283159129 hasPrimaryLocation W42831591291 @default.
- W4283159129 hasRelatedWork W2065202981 @default.
- W4283159129 hasRelatedWork W2081937696 @default.
- W4283159129 hasRelatedWork W2101756985 @default.
- W4283159129 hasRelatedWork W2367930678 @default.
- W4283159129 hasRelatedWork W2392404105 @default.
- W4283159129 hasRelatedWork W2788196166 @default.
- W4283159129 hasRelatedWork W2961983134 @default.
- W4283159129 hasRelatedWork W4200262102 @default.
- W4283159129 hasRelatedWork W4250362494 @default.
- W4283159129 hasRelatedWork W4280495243 @default.
- W4283159129 hasVolume "195" @default.
- W4283159129 isParatext "false" @default.
- W4283159129 isRetracted "false" @default.
- W4283159129 workType "article" @default.