Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283159207> ?p ?o ?g. }
- W4283159207 endingPage "258" @default.
- W4283159207 startingPage "248" @default.
- W4283159207 abstract "PatchMatch-based multi-view stereo (MVS) algorithms have achieved great success in large-scale scene reconstruction tasks. However, reconstruction of textureless planes often fails, as similarity measurement methods may become ineffective in these regions. Thus, a potential depth hypothesis inference strategy is proposed to make the reconstruction result more complete. The strategy consists of two steps. First, for pixels that are not successfully reconstructed, multiple potential depth hypotheses are generated using neighboring reconstructed accurate depth values. Second, depth hypotheses are selected using the Markov random field (MRF). The strategy can significantly increase the reconstruction completeness. In addition, a new acceleration scheme similar to dilated convolution is proposed to speed up the depth map estimation process when using larger matching windows. We integrated the above ideas into a new MVS pipeline, potential hypothesis inference multi-view stereo (PHI-MVS). The result of PHI-MVS is validated on ETH3D and BlendedMVS benchmarks, and it demonstrates competing performance against the state-of-the-art." @default.
- W4283159207 created "2022-06-21" @default.
- W4283159207 creator A5031362837 @default.
- W4283159207 creator A5062848213 @default.
- W4283159207 creator A5069109233 @default.
- W4283159207 creator A5069599675 @default.
- W4283159207 creator A5076092955 @default.
- W4283159207 date "2022-08-01" @default.
- W4283159207 modified "2023-10-06" @default.
- W4283159207 title "Multi-view stereo for large-scale scene reconstruction with MRF-based depth inference" @default.
- W4283159207 cites W1539230104 @default.
- W4283159207 cites W1964057156 @default.
- W4283159207 cites W1978242925 @default.
- W4283159207 cites W1993120651 @default.
- W4283159207 cites W2039286679 @default.
- W4283159207 cites W2074378519 @default.
- W4283159207 cites W2101309634 @default.
- W4283159207 cites W2105303354 @default.
- W4283159207 cites W2108134361 @default.
- W4283159207 cites W2112174119 @default.
- W4283159207 cites W2113137767 @default.
- W4283159207 cites W2143516773 @default.
- W4283159207 cites W2148687996 @default.
- W4283159207 cites W2152671441 @default.
- W4283159207 cites W2164918853 @default.
- W4283159207 cites W2205172244 @default.
- W4283159207 cites W2471962767 @default.
- W4283159207 cites W2519683295 @default.
- W4283159207 cites W2741885505 @default.
- W4283159207 cites W2926429807 @default.
- W4283159207 cites W2962793285 @default.
- W4283159207 cites W2967693513 @default.
- W4283159207 cites W2981826460 @default.
- W4283159207 cites W2982169158 @default.
- W4283159207 cites W2992579396 @default.
- W4283159207 cites W2997914516 @default.
- W4283159207 cites W3034447849 @default.
- W4283159207 cites W3034530552 @default.
- W4283159207 cites W3034945175 @default.
- W4283159207 cites W3035257660 @default.
- W4283159207 cites W3035525671 @default.
- W4283159207 cites W3097305369 @default.
- W4283159207 cites W3108346482 @default.
- W4283159207 cites W3158239938 @default.
- W4283159207 cites W3159126906 @default.
- W4283159207 cites W3170262190 @default.
- W4283159207 doi "https://doi.org/10.1016/j.cag.2022.06.009" @default.
- W4283159207 hasPublicationYear "2022" @default.
- W4283159207 type Work @default.
- W4283159207 citedByCount "4" @default.
- W4283159207 countsByYear W42831592072022 @default.
- W4283159207 countsByYear W42831592072023 @default.
- W4283159207 crossrefType "journal-article" @default.
- W4283159207 hasAuthorship W4283159207A5031362837 @default.
- W4283159207 hasAuthorship W4283159207A5062848213 @default.
- W4283159207 hasAuthorship W4283159207A5069109233 @default.
- W4283159207 hasAuthorship W4283159207A5069599675 @default.
- W4283159207 hasAuthorship W4283159207A5076092955 @default.
- W4283159207 hasConcept C103278499 @default.
- W4283159207 hasConcept C105795698 @default.
- W4283159207 hasConcept C109950114 @default.
- W4283159207 hasConcept C111919701 @default.
- W4283159207 hasConcept C11413529 @default.
- W4283159207 hasConcept C115961682 @default.
- W4283159207 hasConcept C121332964 @default.
- W4283159207 hasConcept C124504099 @default.
- W4283159207 hasConcept C134306372 @default.
- W4283159207 hasConcept C141268832 @default.
- W4283159207 hasConcept C153180895 @default.
- W4283159207 hasConcept C154945302 @default.
- W4283159207 hasConcept C160633673 @default.
- W4283159207 hasConcept C165064840 @default.
- W4283159207 hasConcept C17231256 @default.
- W4283159207 hasConcept C199360897 @default.
- W4283159207 hasConcept C2776214188 @default.
- W4283159207 hasConcept C2778045648 @default.
- W4283159207 hasConcept C2778755073 @default.
- W4283159207 hasConcept C31972630 @default.
- W4283159207 hasConcept C33923547 @default.
- W4283159207 hasConcept C41008148 @default.
- W4283159207 hasConcept C43521106 @default.
- W4283159207 hasConcept C45347329 @default.
- W4283159207 hasConcept C50644808 @default.
- W4283159207 hasConcept C62520636 @default.
- W4283159207 hasConcept C98045186 @default.
- W4283159207 hasConceptScore W4283159207C103278499 @default.
- W4283159207 hasConceptScore W4283159207C105795698 @default.
- W4283159207 hasConceptScore W4283159207C109950114 @default.
- W4283159207 hasConceptScore W4283159207C111919701 @default.
- W4283159207 hasConceptScore W4283159207C11413529 @default.
- W4283159207 hasConceptScore W4283159207C115961682 @default.
- W4283159207 hasConceptScore W4283159207C121332964 @default.
- W4283159207 hasConceptScore W4283159207C124504099 @default.
- W4283159207 hasConceptScore W4283159207C134306372 @default.
- W4283159207 hasConceptScore W4283159207C141268832 @default.
- W4283159207 hasConceptScore W4283159207C153180895 @default.
- W4283159207 hasConceptScore W4283159207C154945302 @default.
- W4283159207 hasConceptScore W4283159207C160633673 @default.