Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283159574> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4283159574 endingPage "12" @default.
- W4283159574 startingPage "1" @default.
- W4283159574 abstract "In this paper, a multimodal knowledge mapping approach is used to digitize enterprise carbon assets, and a corresponding neural network model is designed for use in the practical process. Rich textual entity labels associated with images are obtained using an entity annotation system. A topology-based data fusion method is also designed based on the hierarchical relationship between WordNet and DBpedia to fuse the knowledge obtained from image visualization and text description mining. Existing neural network-based entity linking methods ignore the semantic gap between the context of sequential entity denotative items and the context of graph-structured entities, thus affecting the accuracy of entity linking. It is observed that the importance of words in the context of entity denotative items is different, and the importance of content in the entity context is also different. To solve the above problems, this paper proposes an entity linking method that combines a common attention mechanism with a graph convolutional neural network. Secondly, based on the basic theory of value assessment, the characteristics of classical asset valuation methods and their inapplicability to the valuation of carbon assets are analyzed, and thus the real option valuation method and its two classical models are introduced; after demonstrating the real option characteristics of carbon assets of power enterprise projects, a real option model-based carbon asset valuation model for power enterprise projects is constructed and its applicability is verified with case studies. Through analyzing the current situation and problems of carbon asset valuation work in power enterprises, targeted practical suggestions are put forward to further strengthen and enhance the carbon asset valuation work in power enterprises in the future." @default.
- W4283159574 created "2022-06-21" @default.
- W4283159574 creator A5034855502 @default.
- W4283159574 creator A5083281481 @default.
- W4283159574 date "2022-06-20" @default.
- W4283159574 modified "2023-10-14" @default.
- W4283159574 title "A Neural Network Model for Digitizing Enterprise Carbon Assets Based on Multimodal Knowledge Mapping" @default.
- W4283159574 cites W2888342233 @default.
- W4283159574 cites W2902438947 @default.
- W4283159574 cites W2945040420 @default.
- W4283159574 cites W3003937506 @default.
- W4283159574 cites W3022972893 @default.
- W4283159574 cites W3092207285 @default.
- W4283159574 cites W3095456542 @default.
- W4283159574 cites W3095844753 @default.
- W4283159574 cites W3117282899 @default.
- W4283159574 cites W3163902788 @default.
- W4283159574 cites W3203527155 @default.
- W4283159574 cites W4200054778 @default.
- W4283159574 cites W4200418438 @default.
- W4283159574 cites W4213089433 @default.
- W4283159574 cites W4238505098 @default.
- W4283159574 cites W4244142363 @default.
- W4283159574 cites W4244645389 @default.
- W4283159574 doi "https://doi.org/10.1155/2022/4485168" @default.
- W4283159574 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35769277" @default.
- W4283159574 hasPublicationYear "2022" @default.
- W4283159574 type Work @default.
- W4283159574 citedByCount "0" @default.
- W4283159574 crossrefType "journal-article" @default.
- W4283159574 hasAuthorship W4283159574A5034855502 @default.
- W4283159574 hasAuthorship W4283159574A5083281481 @default.
- W4283159574 hasBestOaLocation W42831595741 @default.
- W4283159574 hasConcept C10138342 @default.
- W4283159574 hasConcept C124101348 @default.
- W4283159574 hasConcept C132525143 @default.
- W4283159574 hasConcept C144133560 @default.
- W4283159574 hasConcept C154945302 @default.
- W4283159574 hasConcept C157659113 @default.
- W4283159574 hasConcept C186027771 @default.
- W4283159574 hasConcept C204321447 @default.
- W4283159574 hasConcept C23123220 @default.
- W4283159574 hasConcept C2522767166 @default.
- W4283159574 hasConcept C41008148 @default.
- W4283159574 hasConcept C56739046 @default.
- W4283159574 hasConcept C80444323 @default.
- W4283159574 hasConcept C81363708 @default.
- W4283159574 hasConceptScore W4283159574C10138342 @default.
- W4283159574 hasConceptScore W4283159574C124101348 @default.
- W4283159574 hasConceptScore W4283159574C132525143 @default.
- W4283159574 hasConceptScore W4283159574C144133560 @default.
- W4283159574 hasConceptScore W4283159574C154945302 @default.
- W4283159574 hasConceptScore W4283159574C157659113 @default.
- W4283159574 hasConceptScore W4283159574C186027771 @default.
- W4283159574 hasConceptScore W4283159574C204321447 @default.
- W4283159574 hasConceptScore W4283159574C23123220 @default.
- W4283159574 hasConceptScore W4283159574C2522767166 @default.
- W4283159574 hasConceptScore W4283159574C41008148 @default.
- W4283159574 hasConceptScore W4283159574C56739046 @default.
- W4283159574 hasConceptScore W4283159574C80444323 @default.
- W4283159574 hasConceptScore W4283159574C81363708 @default.
- W4283159574 hasFunder F4320321001 @default.
- W4283159574 hasLocation W42831595741 @default.
- W4283159574 hasLocation W42831595742 @default.
- W4283159574 hasLocation W42831595743 @default.
- W4283159574 hasOpenAccess W4283159574 @default.
- W4283159574 hasPrimaryLocation W42831595741 @default.
- W4283159574 hasRelatedWork W1484029852 @default.
- W4283159574 hasRelatedWork W1597238586 @default.
- W4283159574 hasRelatedWork W1600594996 @default.
- W4283159574 hasRelatedWork W2119135658 @default.
- W4283159574 hasRelatedWork W2153799433 @default.
- W4283159574 hasRelatedWork W2319296695 @default.
- W4283159574 hasRelatedWork W2326857978 @default.
- W4283159574 hasRelatedWork W2766283363 @default.
- W4283159574 hasRelatedWork W2905461407 @default.
- W4283159574 hasRelatedWork W3016357780 @default.
- W4283159574 hasVolume "2022" @default.
- W4283159574 isParatext "false" @default.
- W4283159574 isRetracted "false" @default.
- W4283159574 workType "article" @default.