Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283160675> ?p ?o ?g. }
- W4283160675 endingPage "4634" @default.
- W4283160675 startingPage "4634" @default.
- W4283160675 abstract "Understanding a person's attitude or sentiment from their facial expressions has long been a straightforward task for humans. Numerous methods and techniques have been used to classify and interpret human emotions that are commonly communicated through facial expressions, with either macro- or micro-expressions. However, performing this task using computer-based techniques or algorithms has been proven to be extremely difficult, whereby it is a time-consuming task to annotate it manually. Compared to macro-expressions, micro-expressions manifest the real emotional cues of a human, which they try to suppress and hide. Different methods and algorithms for recognizing emotions using micro-expressions are examined in this research, and the results are presented in a comparative approach. The proposed technique is based on a multi-scale deep learning approach that aims to extract facial cues of various subjects under various conditions. Then, two popular multi-scale approaches are explored, Spatial Pyramid Pooling (SPP) and Atrous Spatial Pyramid Pooling (ASPP), which are then optimized to suit the purpose of emotion recognition using micro-expression cues. There are four new architectures introduced in this paper based on multi-layer multi-scale convolutional networks using both direct and waterfall network flows. The experimental results show that the ASPP module with waterfall network flow, which we coined as WASPP-Net, outperforms the state-of-the-art benchmark techniques with an accuracy of 80.5%. For future work, a high-resolution approach to multi-scale approaches can be explored to further improve the recognition performance." @default.
- W4283160675 created "2022-06-21" @default.
- W4283160675 creator A5000255592 @default.
- W4283160675 creator A5054106321 @default.
- W4283160675 creator A5072315411 @default.
- W4283160675 date "2022-06-19" @default.
- W4283160675 modified "2023-10-14" @default.
- W4283160675 title "Micro-Expression-Based Emotion Recognition Using Waterfall Atrous Spatial Pyramid Pooling Networks" @default.
- W4283160675 cites W2006426145 @default.
- W4283160675 cites W2019282135 @default.
- W4283160675 cites W2044106642 @default.
- W4283160675 cites W2139916508 @default.
- W4283160675 cites W2161969291 @default.
- W4283160675 cites W2408795146 @default.
- W4283160675 cites W2412782625 @default.
- W4283160675 cites W2426188534 @default.
- W4283160675 cites W2478411578 @default.
- W4283160675 cites W2526853616 @default.
- W4283160675 cites W2567602236 @default.
- W4283160675 cites W2606933083 @default.
- W4283160675 cites W2760370272 @default.
- W4283160675 cites W2889717020 @default.
- W4283160675 cites W2900180747 @default.
- W4283160675 cites W2962802777 @default.
- W4283160675 cites W2963230974 @default.
- W4283160675 cites W3047189009 @default.
- W4283160675 cites W3083667980 @default.
- W4283160675 cites W3103539074 @default.
- W4283160675 cites W3105166944 @default.
- W4283160675 cites W3162295356 @default.
- W4283160675 cites W3204252794 @default.
- W4283160675 cites W4205756129 @default.
- W4283160675 cites W4205892543 @default.
- W4283160675 cites W4207004819 @default.
- W4283160675 cites W764651262 @default.
- W4283160675 doi "https://doi.org/10.3390/s22124634" @default.
- W4283160675 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35746417" @default.
- W4283160675 hasPublicationYear "2022" @default.
- W4283160675 type Work @default.
- W4283160675 citedByCount "2" @default.
- W4283160675 countsByYear W42831606752022 @default.
- W4283160675 crossrefType "journal-article" @default.
- W4283160675 hasAuthorship W4283160675A5000255592 @default.
- W4283160675 hasAuthorship W4283160675A5054106321 @default.
- W4283160675 hasAuthorship W4283160675A5072315411 @default.
- W4283160675 hasBestOaLocation W42831606751 @default.
- W4283160675 hasConcept C108583219 @default.
- W4283160675 hasConcept C119857082 @default.
- W4283160675 hasConcept C121332964 @default.
- W4283160675 hasConcept C127413603 @default.
- W4283160675 hasConcept C13280743 @default.
- W4283160675 hasConcept C142575187 @default.
- W4283160675 hasConcept C153180895 @default.
- W4283160675 hasConcept C154945302 @default.
- W4283160675 hasConcept C185798385 @default.
- W4283160675 hasConcept C195704467 @default.
- W4283160675 hasConcept C199360897 @default.
- W4283160675 hasConcept C201995342 @default.
- W4283160675 hasConcept C205649164 @default.
- W4283160675 hasConcept C2524010 @default.
- W4283160675 hasConcept C2778755073 @default.
- W4283160675 hasConcept C2780451532 @default.
- W4283160675 hasConcept C31972630 @default.
- W4283160675 hasConcept C33923547 @default.
- W4283160675 hasConcept C41008148 @default.
- W4283160675 hasConcept C62520636 @default.
- W4283160675 hasConcept C70437156 @default.
- W4283160675 hasConcept C81363708 @default.
- W4283160675 hasConcept C90559484 @default.
- W4283160675 hasConceptScore W4283160675C108583219 @default.
- W4283160675 hasConceptScore W4283160675C119857082 @default.
- W4283160675 hasConceptScore W4283160675C121332964 @default.
- W4283160675 hasConceptScore W4283160675C127413603 @default.
- W4283160675 hasConceptScore W4283160675C13280743 @default.
- W4283160675 hasConceptScore W4283160675C142575187 @default.
- W4283160675 hasConceptScore W4283160675C153180895 @default.
- W4283160675 hasConceptScore W4283160675C154945302 @default.
- W4283160675 hasConceptScore W4283160675C185798385 @default.
- W4283160675 hasConceptScore W4283160675C195704467 @default.
- W4283160675 hasConceptScore W4283160675C199360897 @default.
- W4283160675 hasConceptScore W4283160675C201995342 @default.
- W4283160675 hasConceptScore W4283160675C205649164 @default.
- W4283160675 hasConceptScore W4283160675C2524010 @default.
- W4283160675 hasConceptScore W4283160675C2778755073 @default.
- W4283160675 hasConceptScore W4283160675C2780451532 @default.
- W4283160675 hasConceptScore W4283160675C31972630 @default.
- W4283160675 hasConceptScore W4283160675C33923547 @default.
- W4283160675 hasConceptScore W4283160675C41008148 @default.
- W4283160675 hasConceptScore W4283160675C62520636 @default.
- W4283160675 hasConceptScore W4283160675C70437156 @default.
- W4283160675 hasConceptScore W4283160675C81363708 @default.
- W4283160675 hasConceptScore W4283160675C90559484 @default.
- W4283160675 hasFunder F4320322699 @default.
- W4283160675 hasIssue "12" @default.
- W4283160675 hasLocation W42831606751 @default.
- W4283160675 hasLocation W42831606752 @default.
- W4283160675 hasLocation W42831606753 @default.
- W4283160675 hasOpenAccess W4283160675 @default.