Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283161730> ?p ?o ?g. }
- W4283161730 endingPage "4619" @default.
- W4283161730 startingPage "4619" @default.
- W4283161730 abstract "Fruit industries play a significant role in many aspects of global food security. They provide recognized vitamins, antioxidants, and other nutritional supplements packed in fresh fruits and other processed commodities such as juices, jams, pies, and other products. However, many fruit crops including peaches (Prunus persica (L.) Batsch) are perennial trees requiring dedicated orchard management. The architectural and morphological traits of peach trees, notably tree height, canopy area, and canopy crown volume, help to determine yield potential and precise orchard management. Thus, the use of unmanned aerial vehicles (UAVs) coupled with RGB sensors can play an important role in the high-throughput acquisition of data for evaluating architectural traits. One of the main factors that define data quality are sensor imaging angles, which are important for extracting architectural characteristics from the trees. In this study, the goal was to optimize the sensor imaging angles to extract the precise architectural trait information by evaluating the integration of nadir and oblique images. A UAV integrated with an RGB imaging sensor at three different angles (90°, 65°, and 45°) and a 3D light detection and ranging (LiDAR) system was used to acquire images of peach trees located at the Washington State University's Tukey Horticultural Orchard, Pullman, WA, USA. A total of four approaches, comprising the use of 2D data (from UAV) and 3D point cloud (from UAV and LiDAR), were utilized to segment and measure the individual tree height and canopy crown volume. Overall, the features extracted from the images acquired at 45° and integrated nadir and oblique images showed a strong correlation with the ground reference tree height data, while the latter was highly correlated with canopy crown volume. Thus, selection of the sensor angle during UAV flight is critical for improving the accuracy of extracting architectural traits and may be useful for further precision orchard management." @default.
- W4283161730 created "2022-06-21" @default.
- W4283161730 creator A5022919722 @default.
- W4283161730 creator A5059594134 @default.
- W4283161730 creator A5072453916 @default.
- W4283161730 date "2022-06-18" @default.
- W4283161730 modified "2023-09-26" @default.
- W4283161730 title "Optimization and Evaluation of Sensor Angles for Precise Assessment of Architectural Traits in Peach Trees" @default.
- W4283161730 cites W1808410813 @default.
- W4283161730 cites W1901176938 @default.
- W4283161730 cites W1968314959 @default.
- W4283161730 cites W1969637737 @default.
- W4283161730 cites W1983818779 @default.
- W4283161730 cites W1999949151 @default.
- W4283161730 cites W2010150513 @default.
- W4283161730 cites W2020678807 @default.
- W4283161730 cites W2027165049 @default.
- W4283161730 cites W2082278455 @default.
- W4283161730 cites W2109862393 @default.
- W4283161730 cites W2143897835 @default.
- W4283161730 cites W2148900376 @default.
- W4283161730 cites W2312775342 @default.
- W4283161730 cites W2541630240 @default.
- W4283161730 cites W2606012773 @default.
- W4283161730 cites W2774842738 @default.
- W4283161730 cites W2788987383 @default.
- W4283161730 cites W2843415492 @default.
- W4283161730 cites W2887291686 @default.
- W4283161730 cites W2901577545 @default.
- W4283161730 cites W2912051998 @default.
- W4283161730 cites W2923900842 @default.
- W4283161730 cites W2948555907 @default.
- W4283161730 cites W2990987212 @default.
- W4283161730 cites W2996332308 @default.
- W4283161730 cites W2998811304 @default.
- W4283161730 cites W3011131544 @default.
- W4283161730 cites W3128516953 @default.
- W4283161730 cites W3131591549 @default.
- W4283161730 cites W3136828796 @default.
- W4283161730 cites W3163593447 @default.
- W4283161730 cites W3165704192 @default.
- W4283161730 cites W3198094612 @default.
- W4283161730 doi "https://doi.org/10.3390/s22124619" @default.
- W4283161730 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35746401" @default.
- W4283161730 hasPublicationYear "2022" @default.
- W4283161730 type Work @default.
- W4283161730 citedByCount "4" @default.
- W4283161730 countsByYear W42831617302022 @default.
- W4283161730 countsByYear W42831617302023 @default.
- W4283161730 crossrefType "journal-article" @default.
- W4283161730 hasAuthorship W4283161730A5022919722 @default.
- W4283161730 hasAuthorship W4283161730A5059594134 @default.
- W4283161730 hasAuthorship W4283161730A5072453916 @default.
- W4283161730 hasBestOaLocation W42831617301 @default.
- W4283161730 hasConcept C101000010 @default.
- W4283161730 hasConcept C113174947 @default.
- W4283161730 hasConcept C131979681 @default.
- W4283161730 hasConcept C134306372 @default.
- W4283161730 hasConcept C144027150 @default.
- W4283161730 hasConcept C154945302 @default.
- W4283161730 hasConcept C199343813 @default.
- W4283161730 hasConcept C205649164 @default.
- W4283161730 hasConcept C2778400979 @default.
- W4283161730 hasConcept C2779692143 @default.
- W4283161730 hasConcept C2780753983 @default.
- W4283161730 hasConcept C33923547 @default.
- W4283161730 hasConcept C39432304 @default.
- W4283161730 hasConcept C39807119 @default.
- W4283161730 hasConcept C41008148 @default.
- W4283161730 hasConcept C51399673 @default.
- W4283161730 hasConcept C59822182 @default.
- W4283161730 hasConcept C62649853 @default.
- W4283161730 hasConcept C71924100 @default.
- W4283161730 hasConcept C82990744 @default.
- W4283161730 hasConcept C86803240 @default.
- W4283161730 hasConceptScore W4283161730C101000010 @default.
- W4283161730 hasConceptScore W4283161730C113174947 @default.
- W4283161730 hasConceptScore W4283161730C131979681 @default.
- W4283161730 hasConceptScore W4283161730C134306372 @default.
- W4283161730 hasConceptScore W4283161730C144027150 @default.
- W4283161730 hasConceptScore W4283161730C154945302 @default.
- W4283161730 hasConceptScore W4283161730C199343813 @default.
- W4283161730 hasConceptScore W4283161730C205649164 @default.
- W4283161730 hasConceptScore W4283161730C2778400979 @default.
- W4283161730 hasConceptScore W4283161730C2779692143 @default.
- W4283161730 hasConceptScore W4283161730C2780753983 @default.
- W4283161730 hasConceptScore W4283161730C33923547 @default.
- W4283161730 hasConceptScore W4283161730C39432304 @default.
- W4283161730 hasConceptScore W4283161730C39807119 @default.
- W4283161730 hasConceptScore W4283161730C41008148 @default.
- W4283161730 hasConceptScore W4283161730C51399673 @default.
- W4283161730 hasConceptScore W4283161730C59822182 @default.
- W4283161730 hasConceptScore W4283161730C62649853 @default.
- W4283161730 hasConceptScore W4283161730C71924100 @default.
- W4283161730 hasConceptScore W4283161730C82990744 @default.
- W4283161730 hasConceptScore W4283161730C86803240 @default.
- W4283161730 hasFunder F4320332299 @default.
- W4283161730 hasIssue "12" @default.